CAHIER DES CHARGES TYPE QUALIROUTES

approuvé par le Gouvernement wallon en date du 20 juillet 2011

CHAPITRE Q

ESSAIS

Édition du 01/01/2021
Les méthodes d'essais décrites dans le chapitre se trouvent soit dans les normes mentionnées ci-dessous, soit dans les méthodes d'essais reprises dans le document QR-Q-1 "Catalogue des Méthodes d'essais (CME)."
<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. 1. EAU DE GACHAGE</td>
<td>2</td>
</tr>
<tr>
<td>C. 2.1. SOL: CLASSIFICATION</td>
<td>2</td>
</tr>
<tr>
<td>C. 2.2. SOL POUR REMBLAI</td>
<td>2</td>
</tr>
<tr>
<td>C. 2.3. TERRES POUR GAZONNEMENTS ET PLANTATIONS</td>
<td>3</td>
</tr>
<tr>
<td>C. 3. SABLES</td>
<td>3</td>
</tr>
<tr>
<td>C. 4. GRAVILLONS</td>
<td>4</td>
</tr>
<tr>
<td>C. 5. GRAVES</td>
<td>6</td>
</tr>
<tr>
<td>C. 5.3.2. AGREGATS D’ENROBÉS BITUMINEUX (AEB)</td>
<td>6</td>
</tr>
<tr>
<td>C. 5.4. SPÉCIFICATIONS DES GRAVES SELON LEUR UTILISATION</td>
<td>6</td>
</tr>
<tr>
<td>C. 5.4.1. GRAVE POUR SOUS-FONDATION</td>
<td>6</td>
</tr>
<tr>
<td>C. 5.4.2 GRAVE POUR FONDATION ET EMPIERREMENT</td>
<td>7</td>
</tr>
<tr>
<td>C. 5.4.3. GRAVE POUR BÉTON MAIGRE</td>
<td>7</td>
</tr>
<tr>
<td>C. 5.4.4. GRAVE POUR GRAVE-BITUMÉ</td>
<td>7</td>
</tr>
<tr>
<td>C. 6. MATÉRIAUX POUR REMBLAIS</td>
<td>7</td>
</tr>
<tr>
<td>C. 6.1. BLOCS LÉGERS À BASE DE POLYSTYRÈNE EXPANSÉ</td>
<td>7</td>
</tr>
<tr>
<td>C. 6.3. GRANULATS D’ARGILE EXPANSÉ POUR REMBLAI</td>
<td>7</td>
</tr>
<tr>
<td>C. 7. CENDRES VOLANTES</td>
<td>8</td>
</tr>
<tr>
<td>C. 8. CIMENT</td>
<td>8</td>
</tr>
<tr>
<td>C. 9. CHAUX</td>
<td>9</td>
</tr>
<tr>
<td>C. 10. AUTRES ADDITIFS POUR TRAITEMENT DE SOLS OU DE GRANULATS</td>
<td>9</td>
</tr>
<tr>
<td>C. 10.1. LIANTS HYDRAULIQUES ROUTIERS</td>
<td>9</td>
</tr>
<tr>
<td>C. 10.2. FINES DE SCORIES BOF ET EAF</td>
<td>10</td>
</tr>
<tr>
<td>C. 11.1. FILLER POUR ENROBÉS HYDROCARBONÉS</td>
<td>10</td>
</tr>
<tr>
<td>C. 12.1. BITUME ROUTIER (NBN EN 12591)</td>
<td>10</td>
</tr>
<tr>
<td>C. 12.3. BITUME POLYMÈRE NEUF (NBN EN 14023)</td>
<td>10</td>
</tr>
<tr>
<td>C. 12.4. BITUME À INDICE DE PÉNÉTRATION POSITIF (PREN 13924-2:2009)</td>
<td>11</td>
</tr>
<tr>
<td>C. 12.5. BITUME FLUXÉ</td>
<td>11</td>
</tr>
<tr>
<td>C. 12.6. BITUME FLUXÉ À BASE DE BITUME POLYMÈRE</td>
<td>11</td>
</tr>
<tr>
<td>C. 12.7. EMULSION ANIONIQUE DE BITUME</td>
<td>12</td>
</tr>
<tr>
<td>C. 12.8. EMULSION CATIONIQUE DE BITUME (NBN EN 13808)</td>
<td>12</td>
</tr>
<tr>
<td>C. 12.11. BITUME DUR (NBN EN 13924)</td>
<td>12</td>
</tr>
<tr>
<td>C. 12.12. ADDITIFS POUR LIANT (POLYOLÉFINES, ASPHALTE DE TRINIDAD, BITUME NATUREL, BITUME À HAUTE DURETÉ)</td>
<td>13</td>
</tr>
<tr>
<td>C. 12.13. LIANT À BASE DE RÉSINE</td>
<td>13</td>
</tr>
<tr>
<td>C. 12.14. EMULSION À BASE DE LIANT SYNTHÉTIQUE CLAIR</td>
<td>13</td>
</tr>
<tr>
<td>C. 12.20. LIANTS PIGMENTABLES</td>
<td>13</td>
</tr>
<tr>
<td>C. 12.21. LIANT SPÉCIAL POUR JOINT (NBN EN 14188-1)</td>
<td>14</td>
</tr>
<tr>
<td>C. 13.1. MORTIER DE CIMENT</td>
<td>14</td>
</tr>
</tbody>
</table>
C. 13.2. MORTIER DE RÉPARATION À BASE DE LIANT HYDRAULIQUE 14
C. 13.3. MORTIERS DE RÉPARATION À BASE DE RÉSINE .. 14
C. 13.4. REVÊTEMENT DE PROTECTION DES ARMATURES CONTRE LA CORROSION 14
C. 13.5. MORTIERS DE CALAGE, DE BOURRAGE ET DE SCELLEMENT À BASE DE
LIANTS HYDRAULIQUES .. 15
C. 14. BÉTON ... 15
C. 15. FIBRES .. 15
C. 16. ACIER .. 15
C. 16.1. GOUJON, BARRE D’ANCRAJE, BERCEAU ... 15
C. 16.2. ACIER POUR REVÊTEMENT EN BÉTON ARMÉ CONTINU 15
C. 16.4. ACIER POUR BÉTON ARMÉ .. 15
C. 16.5. ACIER DE PRÉCONTRAINTE ... 15
C. 16.6. ACIER POUR OUVRAGES MÉTALLIQUES .. 16
C. 16.7. ACIER POUR OUVRAGES MÉTALLIQUES .. 16
C. 16.8. ACIER POUR OUVRAGES MÉTALLIQUES .. 16
C. 17. ADJUVANTS POUR BETONS, MORTIER ET COULIS 16
C. 18. PRODUIT DE CURE .. 16
C. 19. FOND DE JOINT .. 17
C. 21.1. PRODUIT DE SCELLEMENT COULÉ À CHAUD (NBN EN 14188-1) 17
C. 21.2. PRODUIT DE SCELLEMENT COULÉ À FROID (NBN EN 14188-2) 17
C. 21.3. BANDE BITUMINEUSE PRÉFORMÉE POUR JOINT 17
C. 21.5. PRODUIT D’ANCRAJE .. 18
C. 21.6. RESINE D’INJECTION .. 18
C. 21.7. COLLE POUR ELEMENTS LINÉAIRES .. 18
C. 22. FOURRURE DE JOINTS DE DILATION ... 18
C. 23. IMPREGNATION HYDROFOBE .. 18
C. 24. MEMBRANE PLASTIQUE ... 18
C. 25. GEOTEXTILES ... 19
C. 26. GÉOCOMPOSITE DRAINANT ... 19
C. 26.2.1. FILTRE .. 19
C. 26.2.3. GÉOESPACEUR ... 20
C. 27. GEOGRILLE .. 20
C. 27.1. GEOGRILLES SYNTHÉTIQUE POUR REVÊTEMENTS BITUMINEUX 20
C. 27.2. GRILLAGES D’ARMATURES MÉTALLIQUES POUR REVÊTEMENTS
BITUMINEUX .. 20
C. 27.3. GEOGRILLES DE RENFORCEMENT DE SOL ... 20
C. 28. PIERRE NATURELLE ... 21
C. 29.3 C.29.4 C 29.5 PAVÉS EN PIERRE NATURELLE (VOIRIE CIRCULEE, BALISAGE,
ZONES PIETONNES ET CYCLABLES) ... 21
C. 29.6. BRIQUES DE PAVAGE EN TERRE CUITE .. 22
C. 29.7. / C. 29.8. PAVÉS EN BÉTON DE CIMENT (INCL. PAVÉS POUR REVÊTEMENTS
DE SOL PERMEABLES À L’EAU) ... 22
C. 30.1. CARREAX EN BÉTON ... 23
C. 30.2. DALLES EN PIERRE NATURELLE ... 23
C. 30.3. DALLES DE BÉTON GAZON ... 23
C. 30.4. DALLES DE REPÉRAGE ... 24
C. 31.1. BORDURE EN PIERRE NATURELLE ... 24
C. 31.1. / C. 32. / C. 33. / C. 34. ELEMENTS PRÉFABRIQUÉS EN BÉTON: BORDURES, BANDES DE CONTREBUTAGE, FILETS D’EAU, BORDURES-FILETS D’EAU, DÉLIMITEURS DE TRAFIC, BORDURES DE DÉMARCATION .. 24
C. 35. CANIVEAUX PRÉFABRIQUÉS ... 24
C. 36. DISPOSITIFS DE RETENUE EN ACIER, MIXTES ACIER-BOIS ET LISSES DE SÉCURITÉ POUR MOTOCYCLISTES .. 25
C. 36.1. DISPOSITIFS DE RETENUE EN ACIER .. 25
C. 36.2. DISPOSITIFS DE RETENUE EN ACIER-BOIS .. 25
C. 36.3. LISSE DE SÉCURITÉ POUR MOTOCYCLISTES ... 25
C. 37. ATTENUATEURS DE CHOC FIXES .. 25
C. 38.1. TUYAUX ÉTANCHES NON SOUMIS À PRESSION INTERNE 25
C. 38.1.2. TUYAUX EN BÉTON .. 25
C. 38.1.2.1. TUYAUX CIRCULAIRES ET OVOÏDES EN BÉTON 25
C. 38.1.3. TUYAUX EN GRES .. 25
C. 38.1.4. TUYAUX EN MATÉRIAUX SYNTHÉTIQUES .. 26
C. 38.1.4.1. TUYAUX ET RACCORDES EN PVC NON PLASTIFIÉ (PVC-U) 26
C. 38.1.4.2. TUYAUX ET RACCORDES EN PEHD .. 27
C. 38.1.4.3. TUYAUX ET RACCORDES EN PP ... 28
C. 38.1.4.4. TUYAUX ET RACCORDES À PAROIS STRUCTURÉES EN PEHD OU PP .. 29
C. 38.1.5. TUYAUX EN FONTE DUCTILE .. 30
C. 38.2. TUYAUX ÉTANCHES SOUMIS À PRESSION INTERNE 31
C. 38.2.2. TUYAUX EN BÉTON .. 31
C. 38.2.3. TUYAUX EN FONTE DUCTILE .. 31
C. 38.2.4. TUYAUX EN ACIER .. 31
C. 38.2.5. TUYAUX EN MATÉRIAUX SYNTHÉTIQUES .. 31
C. 38.2.5.1. TUYAUX ET RACCORDES EN PVC NON PLASTIFIÉE (PVC-U) 31
C. 38.2.5.2. TUYAUX EN PVC NON PLASTIFIÉE ORIENTÉ (PVC-O) 34
C. 38.2.5.3. TUYAUX ET RACCORDES EN POLYÉTHYLÈNE (PE) 34
C. 39. ANNEAUX, JOINTS ET BAGUES D’ÉTANCHÉITÉ ... 34
C. 40. TUYAUX DRAINANTS ET MATÉRIAUX FILTRANTS .. 34
C. 40.1. TUYAUX DRAINANTS ... 34
C. 40.2. MATÉRIAUX FILTRANTS .. 35
C. 41. FONTE ET ACIER MOULU ... 35
C. 41.1. AVALOIRS ... 35
C. 41.2. TRAPPILONS ... 35
C. 42. REGARDS DE VISITE ET BOÎTES DE BRANCHEMENT EN BÉTON NON ARMÉ, BÉTON FIBRE ACIER ET BÉTON ARMÉ .. 36
C. 43. ECHELLES ET ECHELONS ... 36
C. 44. ELEMENTS PRÉFABRIQUÉS EN BÉTON ARMÉ .. 36
C. 45. BRIQUES ET BLOCS DE MAÇONNERIE ... 36
C. 45.2. BRIQUES EN TERRE CUITE ... 36
C. 45.3. BLOCS EN BÉTON ... 36
C. 45.4. BLOCS DE LAITIER BASIQUE DE HAUT-FOURNEAU 36
C. 46. PRODUITS POUR SYSTEME D’ÉTANCHÉITÉ ... 36
C. 46.1. SYSTÈME D’ÉTANCHÉITÉ .. 36
C. 46.1.1. SYSTÈME D’ÉTANCHÉITÉ À BASE DE FEUILLE BITUMINEUSE ARMÉE 37
C. 46.1.2. SYSTÈME D’ÉTANCHÉITÉ À BASE DE RÉSINE .. 38
C. 46.1.3. SYSTÈME D’ÉTANCHÉITÉ À BASE D’ASPHALTE COULÉ 38
C. 46.2. SYSTÈME D’ÉGALISATION DU SUPPORT ... 38
C. 46.2.1. TIRE-GRATTE EPOXY .. 38
C. 46.2.2. MASSE D’ÉGALISATION BITUMINEUSE ... 38
C. 47. APPUIS D’OUVRAGE D’ART .. 39
C. 48. JOINTS DE DILATATION POUR OUVRAGES D’ART .. 39
C. 49. GARDE-CORPS MÉTALLIQUES ... 39
C. 50. REPÈRES TOPOGRAPHIQUES .. 39
C. 51. PEINTURES .. 39
C. 51.2. REVÊTEMENT DE PROTECTION DU BÉTON .. 39
C. 51.3. REVÊTEMENT D’IMPERMÉALISATION OU D’ÉTANCHÉITÉ DU BÉTON 39
C. 52. LES MATÉRIAUX DE MARQUAGE .. 40
C. 52.2.1. PRODUITS DE MARQUAGE ... 40
C. 52.2.1.1. PEINTURES ... 40
C. 52.2.1.2. ENDUI TS À CHAUD .. 41
C. 52.2.1.3. ENDUI TS À FROID .. 42
C. 52.2.1.4. PRODUITS PRÉFABRIQUÉS (PRÉFORMÉS) .. 42
C. 52.2.1.5. PLOTS RÉTRORÉFLECHISSANTS ... 43
C. 52.2.2. MICROBILLES DE VERRE ... 43
C. 52.2.2.1. MICROBILLES DE VERRE DE PREMELANGE .. 43
C. 52.2.2.2. MICROBILLES DE VERRE DE SAUPOUUDRAGE ET LES ÉLÉMENTS RÉTRORÉFLECHISSANTS .. 43
C. 52.2.3. PRODUITS ANTIDÉRAPANTS ... 44
C. 52.2.4. MÉLANGES DE MICROBILLES ET DE PRODUITS ANTIDÉRAPANTS 44
C. 53.1.1. - C. 53.1.5. MATÉRIAUX POUR SIGNAUX ROUTIERS: ALUMINIUM, ACIER, ÉLÉMENTS DE BOULONNERIE, BÉTON POUR FONDATION, COLLES DE FIXATION 44
C. 55. MOBILIER URBAIN .. 45
C. 56. MATÉRIAUX POUR PROTECTION DE BERGES ET DE TALUS 45
C. 57. COMPOSANTS DE RÉSEAUX D’ADDOUCTION ET DE DISTRIBUTION D’EAU POTABLE - RÈGLES DE BASE ... 45
C. 58. TUYAUX, RACCORDS, APPAREILS ET ACCESSOIRES POUR L’ADDOUCTION ET LA DISTRIBUTION D’EAU POTABLE .. 45
C. 59. AUTRES FOURNITURES SPÉCIFIQUES À L’ÉTABLISSEMENT DES INSTALLATIONS D’ADDUCTION ET DE DISTRIBUTION D’EAU POTABLE .. 46
C. 60 ASPHALTE COULÉ ... 46
C. 60.1 ASPHALTE COULÉ COMME COUCHE D’ÉTANCHÉITÉ ... 46
C. 60.2 ASPHALTE COULÉ POUR ÉLÉMENTS LINÉAIRES ... 46
C. 60.3 ASPHALTE COULÉ COMME COUCHE DE PROTECTION ... 47
C. 60.4 ASPHALTE COULÉ POUR REVÊTEMENT ET RÉPARATION 47
C. 60.5 ASPHALTE COULÉ POUR RÉPARATION DE FISSURES ... 48
C. 61 DOLOMIE .. 48
C. 62 DISPOSITIFS DE BALISAGE DES ROUTES ... 48
C. 63 DISPOSITIFS ANTI-ÉBLOUISSEMENT ... 48
C. 65 BENTONITE ... 48
D. 2 DÉMOLITION SÉLECTIVE ... 48
D. 2.1.1.2. FRAISAGE DE COUCHES DE CHAUSSÉE ... 48
E. 2 DEBLAIS / E. 3 REMBLAIS .. 49
E. 3.5 / E. 3.6. REMBLAIS EN BLOCS LÉGERS / REMBLAIS EN GRANULATS D’ARGILE EXPANSEÉ ... 49
E. 3.7 MATÉRIAUX AUTOCOMPACTANT RÉEXCLAVABLE .. 50
E. 4 TERRASSEMENTS PARTICULIERS ... 50
E. 5 TERRASSEMENTS POUR CANALISATIONS, RACCORDEMENTS, CHAMBRES DE VISITE OU D’APPAREILS, DRAINS ET GAINES ... 50
F. 2 TRAVAUX PRÉPARATOIRES / F. 3 SOUS-FONDATIONS / F. 4.1 - F. 4.9. FONDATIONS .. 50
F. 4.10 FONDATIONS EN GRAVE-BITUME .. 51
G. PAVAGE-DALLAGE-REVÊTEMENTS EN GRANULATS - DISPOSITIFS DE SÉCURITÉ ET DE MODÉRATION DE LA VITESSE .. 52
G. 1 REVÊTEMENTS EN BÉTON DE CIMENT ... 52
G. 2 REVÊTEMENTS BITUMINEUX ... 53
G. 3 REVÊTEMENTS EN ASPHALTE COULÉ (MA), ENDUITS SUPERFICIELS, MATERIAUX BITUMINEUX COULES A FROID (MBCF), ET ENDUITS SPECIAUX 54
G. 3.1 ASPHALTE COULÉ (MA) ... 54
G. 3.2 ENDUITS SUPERFICIELS ... 54
G. 3.3 MATÉRIAUX BITUMINEUX COULÉS À FROID (MBCF) ... 54
G. 3.4 ENDUITS SCELLES PAR UN MBCF .. 55
G. 3.5 ENDUIT SUPERFICIEL À HAUTE PERFORMANCE (ESHP) 55
G. 4 / G. 5 PAVAGE, DALLAGE ... 55
G. 6 REVÊTEMENTS EN GRANULATS .. 55
G. 7 DISPOSITIFS DE SÉCURITÉ ET DE MODÉRATION DE LA VITESSE 56
H. ELÉMENTS LINÉAIRES ... 56
H. 1 BORDURES, FILETS D’EAU, BORDURES-FILETS D’EAU ET BANDES DE CONTREBUTAGE ... 56
H. 1.1. BORDURES EN PIERRE NATURELLE .. 56
H. 1.2. / H. 1.3. ÉLÉMENTS LINÉAIRES EN BÉTON PRÉFABRIQUÉS OU COULÉS EN PLACE ... 56
H. 1.4. ÉLÉMENTS LINÉAIRES EN ASPHALTE COULÉ ... 57
H. 1.5. ÉLÉMENTS LINÉAIRES EN PAVAGE ... 57
H. 2. DISPOSITIFS DE RETENUE .. 57
H. 2.1. DISPOSITIFS DE RETENUE EN BÉTON PRÉFABRIqué ... 57
H. 2.2. DISPOSITIFS DE RETENUE EN BÉTON COULÉ EN PLACE ... 57
H. 2.3. DISPOSITIFS DE RETENUE EN ACIER .. 57
H. 2.4. DISPOSITIFS DE RETENUE MIXTEs ACIER-BOIS ... 57
H. 2.5. LISSES DE SÉCURITÉ POUR MOTOCYCLISTES .. 58
H. 2.6. ATTÉNUATEURS DE CHOCs FIXEs ... 58
I. 1. DRAINAGE ET ÉGOUTTAGE .. 58
I. 2. CANALISATIONS EN TUYAUX .. 58
I. 8. RÉPARATION ET RÉNOVATION DE CANALISATIONS ET DE REGARDS .. 58
I. 8.6. COQUES ET CUNETTES EN POLYESTER ARMé DE FIBRES DE VERRE 58
I. 8.9. PANNEAUX PRÉFABRIQUÉS EN GRÉS (DALLES CÉRAMIQUES) .. 58
I. 8.10. RÉNOVATION DE CANALISATIONS PAR PROJECTION DE MATÉRIAUX HYDRAULIQUES 58
I. 8.11. RÉPARATION OU RÉNOVATION AU MOYEN D’UN MORTIER .. 58
I. 8.13.1. PROTECTION CONTRE LA CORROSION AU MOYEN DE MORTIER “ANTI-CORROSION” 59
I. 8.13.3. PROTECTION CONTRE LA CORROSION AU MOYEN DE MORTIER “ANTI-CORROSION” 59
I. 8.15. TUBAGE SANS ESPACE ANNULAIRE AU MOYEN DE TUBES EN PEHD CONTINU PREDEFORMÉS (CLOSE-FIT-LINING) .. 59
I. 8.16. INJECTIONS POUR STABILISATION DU SOL ET/OU COMPLEMENt DE CAVITÉs POUR OUVRAGEs D’ASSAINISSEMENT ... 60
I. 8.17. RÉPARATION OU RÉNOVATION DES REGARDS DE VISITE (ET AUTRES OUVRAGES SIMILAIRES) ... 60
I. 10. EXAMEN VISUEL DES OUVRAGEs .. 60
J. 1. REGARDS DE VISITE, BOITES DE BRANCHEMENT ET CHAMBRES POUR APPAREILs 60
J. 3. / J. 4. PETITS OUVRAGEs EN BÉTON, BÉTON ARMé, ELEMENTS PRÉFABRIQUÉs EN BÉTON ARMé .. 60
J. 5. MACONNERIE EN BRIQUES DE TERRE CUItE ET EN MATÉRIAUX AGGLOMÉRÉs 61
J. 6. MACONNERIE ARMé ... 61
J. 7. MACONNERIE EN PIERRE NATURELLE .. 61
J. 8. IMPERMÉABILISATION ET DRAINAGE DES MACONNERIES ET DU BÉTON 61
J. 9. COUVRE-MURS ET TABLETTES SOUS GARDE-CORPS ... 61
J. 10. PERRÉs, GABIONS ET ENROCHEMENTS .. 61
J. 11. ECRANS ET PAREMENTS ANTIBRUIt .. 61
N. 1. RÉPARATION DU BÉTON
N. 1.1. RÉPARATION DU BÉTON AU MOYEN DE MORTIER À BASE DE RÉSINE
N. 1.2. RAGRÉAGE DU BÉTON AU MOYEN DE MORTIER À BASE DE LIANT HYDRAULIQUE
N. 1.3. RÉPARATION DES DALLES DE TABLIER
N. 1.4. RÉPARATION ET RENFORCEMENT AU MOYEN DE BÉTON PROJETÉ

K. 2. FONDATIONS PROFONDES
K. 3. OUVRAGES ENTERRÉS
K. 4. OUVRAGES EN BÉTON ET MACONERIE
K. 5. ACIERS POUR BÉTON ARMÉ
K. 6. ACIERS POUR OUVRAGES MÉTALLIQUES
K. 6.2. PROTECTION DES ACIERS
K. 7. ELÉMENTS POUR OUVRAGES D’ART
K. 8. DISPOSITIFS D’APPUI, JOINTS DE DILATATION ET D’ÉTANCHEITÉ
K. 8.1. APPUI EN NÉOPRÈNE / K.8.2. APPUIS SPÉCIAUX
K. 8.3. JOINT DE DILATATION POUR PONT
K. 9. PROTECTION DES OUVRAGES
K. 9.1. ETANCHEITÉ DES DALLES DE TABLIER
K. 9.2. DRAINAGE ET ÉVACUATION DES EAUX
K. 9.3. IMPERMÉABILISATION DU BÉTON EXPOSÉ À UNE FORTE SATURATION EN EAU
K. 9.4. ETANCHEMENT DU BÉTON EXPOSÉ À UNE FORTE SATURATION EN EAU
K. 9.6. PROTECTION AU MOYEN DE REVÊTEMENT DES SURFACES EN BÉTON SOUMISES AUX INFLUENCES EXTÉRIEURES ET NON SOUMISES AU TRAFIC
K. 11. ESSAIS ET ÉPREUVES DES OUVRAGES D’ART
K. 12. DIVERS
K. 12.1. REPÈRES TOPOGRAPHIQUES
K. 12.8. ETABLISSEMENT DES NOTES DE CALCUL

L. SIGNALISATION ROUTIÈRE
L. 1. GARDE-CORPS METALLIQUES
L. 2. TRAVAUX DE SIGNALISATION VERTICALE
L. 4. SIGNALISATION HORIZONTALE (MARQUAGES ROUTIERS)
L. 5. ECRAN ANTI-ÉBLOUISSEMENT

M. TRAVAUX D’ENTRETIEN ET DE RÉPARATIONS
M. 1. RELÈVEMENT ET/OU STABILISATION DE REVÊTEMENT EN BÉTON PAR INJECTION
M. 2.1. RELÈVEMENT ET/OU STABILISATION DE REVÊTEMENT EN BÉTON PAR INJECTION
M. 3. DISPOSITIFS D’APPUI, JOINTS DE DILATATION ET D’ÉTANCHEITÉ
M. 4.3. INTERFACES BITUMINEUSES AVEC GÉOTEXTILE NON TISSÉ
M. 4.5. INTERFACES AVEC GÉOTEXTILE NON TISSÉ RENFORCÉ PAR UNE GÉOGRILLE ET MATÉRIAU SYNTHÉTIQUE OU PAR UN RÉSEAU ORTHOGONAL DE FIBRES SYNTHÉTIQUES

N. ENTRETIEN ET RÉPARATION DES OUVRAGES D’ART
N. 1. RÉPARATION DU BÉTON
N. 1.1. RÉPARATION DU BÉTON AU MOYEN DE MORTIER À BASE DE RÉSINE
N. 1.2. RAGRÉAGE DU BÉTON AU MOYEN DE MORTIER À BASE DE LIANT HYDRAULIQUE
N. 1.3. RÉPARATION DES DALLES DE TABLIER
N. 1.4. RÉPARATION ET RENFORCEMENT AU MOYEN DE BÉTON PROJETÉ
N. 1.5. INJECTION DES FISSURES ...68
N. 1.6. EGALISATION DE SURFACE DU BÉTON AU MOYEN DE MORTIER À BASE DE LIANT HYDRAULIQUE ...68
N. 1.7. PROTECTION AU MOYEN D’UN REVÊTEMENTS DES SURFACES EN BÉTON SOUMISES AUX INFLUENCES EXTÉRIEURES ET NON SOUMISES AU TRAFIC ..68
N. 1.8. PROTECTION CATHODIQUE DES ARMATURES DU BÉTON ...68
N. 1.9. CALAGE, BOURRAGE ET SCELLEMENT AU MOYEN DE MORTIERS À BASE DE LIANT HYDRAULIQUE ...68
N. 1.10. PROTECTION DES ARMATURES CONTRE LA CORROSION AU MOYEN D’UN REVÊTEMENT ...69
N. 1.11. SCELLEMENT DE BARRES D’ANCHORAGE ...69
N. 1.12. IMPERMÉABILITÉ OU ÉTANCHEMENT DU BÉTON EN CONTACT PERMANENT OU SEMI PERMANENT AVEC L’EAU ...69
N. 1.13. RÉPARATION DU BÉTON, EN CAS DE CORROSION (PAR DÉPASSIVATION DUE À LA CARBONATATION) D’ARMATURES AFFLEURANTES ...69
N. 1.14. HYDROFUGATION DU BÉTON AU MOYEN D’IMPRÉGNATION HYDROPHOBES ...69
N. 2. RÉPARATION DE MACONNERIES ...69
N. 2.1. RÉFECTION DE MACONNERIE DE BRIQUES, DE BLOCS ET DE PIERRES NATURELLES - N. 2.2. REMPLACEMENT EN RECHERCHE DE BRIQUES, DE BLOCS ET DE PIERRES NATURELLES ...70
N. 2.3. REJOINTEOIJEMENT ...70
N. 2.4. ANCRAGE DES MURS DE TÊTE D’UN PONT VOÛTE EN MACONNERIE ...70
N. 2.5. RÉALISATION DE BARBACANES DE DRAINAGE ...70
N. 3. ENTRETIEN ET RÉPARATION DE STRUCTURES EN ACIER ...70
N. 4. RÉPARATION DE L’ÉTANCHEITÉ DE DALLES DE TABLIER AINSI QUE DE LEUR DRAINAGE ET DE L’ÉVACUATION D’EAU ...70
N. 5. RÉPARATION D’APPUI ...70
N. 6. REMPLACEMENT DES TABLETTES SOUS GARDE-CORPS ...70
N. 7. REMPLACEMENT D’ELEMENTS DE GARDE-CORPS ET DE BARRIÈRES DE SÉCURITÉ POUR OUVRAGES D’ART ...70
N. 8. REPÈRES DE NIVELLEMENT ...70
N. 9. ENTRETIEN, RÉPARATION ET REMPLACEMENT DES JOINTS DE DILATATION ...71
N. 9.1. ENTRETIEN DES JOINTS DE DILATATION ...71
N. 9.3. REMPLACEMENT D’UN JOINT DE DILATATION ...71
N. 10. RÉPARATION D’OUVRAGES EN TERRE ARMÉE ...71
P. DISTRIBUTION D’EAU ...71
P. 1.1.2.2.3.1.5.1.5. SOUDURE À EFFECTUER SUR CHANTIER ...71
P. 1.1.8.2. CANALISATIONS SONT ÉPROUVÉES SOUS UNE PRESSION HYDRAULIQUE ...71
P. 1.1.8.3. CANALISATIONS DE TOUDES NATURES SAUF PE, SONT ÉPROUVÉES SOUS UNE PRESSION HYDRAULIQUE ...71
P. 1.2.1.4. NIVEAU SONORE POUR GROUPE NON IMMERSIBLE ...71
P. 1.2.8.15. RESISTANCE D’ISOLEMENT ...71
P. 2.1.1.5. NIVEAU SONORE POUR GROUPE NON IMMERSIBLE ...71
P. 2.1.8.15. GROUPE MOTOPOMPE ...71
P. 2.4.7. CUVE SOUS PRESSION ... 72
P. 2.4.7. CUVE SOUS PRESSION ... 72
P. 2.5.1. TUYAUTERIES EN ACIER INOXYDABLE ET ACCESSOIRES 72
P. 2.7.6. CUVE D’AIR COMPRIÉ ET ACCESSOIRES 72
P. 4.2.2. TUYAUTERIES DE TYPE RIGIDE (PVC COLLÉ) OU DE TYPE SOUPLE (PE OU
PTFE) POUR LE TRANSPORT DES RÉACTIFS .. 72
P. 6.1.1.3. CABINE HAUTE TENSION .. 72
P. 6.1.2.1.4. CABINE HAUTE TENSION ... 72
P. 6.1.2.8.1. CABINE HAUTE TENSION ... 72
P. 6.1.2.8.2.3. CABINE HAUTE TENSION ... 72
P. 6.1.2.9. CABINE HAUTE TENSION .. 72
P. 6.2.3.2. TRANSFORMATEUR DE PUISSANCE ... 72
P. 6.2.3.3. TRANSFORMATEUR DE PUISSANCE ... 73
P. 6.2.3.4. TRANSFORMATEUR DE PUISSANCE ... 73
P. 6.2.3.16. TRANSFORMATEUR DE PUISSANCE ... 73
P. 6.3.1.4. ARMOIRE ELECTRIQUE ... 73
P. 6.4. CABLAGE ELECTRIQUE ... 73
P. 6.4.1.1. CABLES DE PUISSANCE MOYENNE TENSION: MONO-CONDUCTEUR EN
CUIVRE ... 73
P. 6.4.1.2. CABLES DE PUISSANCE MOYENNE TENSION: MONO-CONDUCTEUR EN
ALUMINIUM .. 73
P. 6.4.2.1. CABLES NON-ARMES POUR POSE INTERIEURE, EXTERIEURE ET
SOUTERRAINE AV CONDUCTEURS EN CUIVRE .. 73
P. 6.4.2.2. CABLES NON-ARMES POUR POSE EXTERIEURE ET SOUTERRAINE AVEC
CONDUCTEURS EN ALUMINIUM .. 73
P. 6.4.2.3. CABLES ARMES POUR POSE INTERIEURE, EXTERIEURE ET
SOUTERRAINE AVEC CONDUCTEURS EN CUIVRE 73
P. 6.4.2.4. CABLES D’INSTALLATION INTERIEURE (AVEC HALOGENE) 74
P. 6.4.2.5. CABLES D’INSTALLATION INTERIEURE SANS HALOGENE 74
P. 6.4.2.6. CABLES D’INSTALLATION INTERIEURE AVEC PROTECTION METALLIQUE
(AVEC HALOGENE) .. 74
P. 6.4.2.7. CABLES D’INSTALLATION INTERIEURE AVEC PROTECTION METALLIQUE
SANS HALOGENE ... 74
P. 6.4.2.8. CABLES SPECIAUX POUR APPLICATION VARIATEUR DE FREQUENCE 74
P. 6.4.3.1. CABLES DE SIGNALISATION MULTI-CONDUCTEURS NON-ARMES,
TENSION DE SERVICE 150 V ... 74
P. 6.4.3.2. CABLES DE SIGNALISATION MULTI-CONDUCTEURS ARMES, TENSION DE
SERVICE 1000 V .. 74
P. 6.4.3.3. CABLES DE TELECOMMUNICATION MULTI-PAIRES ARMES, TENSION DE
SERVICE 500 V .. 74
P. 6.4.4. CABLES DE SECURITE RESISTANT AU FEU .. 75
P. 6.4.4.2. CABLES DE PUISSANCE ET CONTROLE DE TENSION ASSIGNEE 0,6/1 KV 75
P. 6.4.5. CABLES FLEXIBLES (ET APTE A ETRE IMMERGE DANS L’EAU) 75
P. 6.4.8.2. FIBRE OPTIQUE - CABLES NON-METALLIQUES A TUBE CENTRAL (JUSQU’À MAX. 24 FIBRES)..75
P. 6.4.8.3. FIBRE OPTIQUE CABLES NON METALLIQUES MULTITUBES..75
P. 6.4.8.4. FIBRE OPTIQUE - CABLES AVEC ARMURE METALLIQUE ..75
P. 6.4.8.6. FIBRE OPTIQUE ..75
P. 6.4.8.7.5.1.3. POSE ET TESTS DES GAINES POUR LE SOUFFLAGE DE CABLES A FIBRES OPTIQUES ...75
P. 7.3.2.3. MORTIER POUR CUVE DE STOCKAGE ..75
P. 7.4.2. DURABILITE DES OUVRAGES DE STOCKAGE- DURABILITE DU SUPPORT (PAROIS EN BETON ARME)..75
Les méthodes d’essais applicables dans le cadre du présent cahier des charges type sont mentionnées sous la forme standard suivante :

N° du (des) § concerné(s) - Titre du (des) § concerné(s)
Caractéristiques mesurées ou nom du (des) § concerné(s) Référence du mode opératoire Commentaires et ajouts de l’essai

Les sigles utilisés pour préciser l’origine des modes opératoires sont les suivants :
ASTM : American Society for Testing and Materials
BS : British Standard Institution
CME : Catalogue des méthodes d’essais
CRR : Centre de recherches routières
DIN : Deutsches Institut für Normung
EN : Norme européenne
ENV : Norme européenne intérimaire (prénorme)
ISO : Organisation internationale de Normalisation
NBN : Institut belge de Normalisation
NF : Norme française
NF XP : Norme française expérimentale
prEN : Projet de norme européenne
UBAtc : Union belge pour l’Agrément technique dans la construction
CEN/TS : CEN Spécification Technique (Technical Specification)
VDG : Verein Deutsche Gietereifachleute

Quand il existe des addendas ou des corrigendums à la norme référencée, ceux-ci doivent toujours être pris en compte.

Dans la troisième colonne des tableaux figurent notamment :
– des précisions ou des modifications qui s’appliquent au mode opératoire indiqué dans la deuxième colonne
– des modes opératoires officiellement reconnus et applicables par le laboratoire d’essai pour autant que la méthode soit validée par rapport au mode opératoire de la deuxième colonne; ils sont identifiés sous la dénomination « Autres méthodes »
– des modes opératoires qui seront automatiquement remplacés par le mode opératoire de la deuxième colonne dès sa parution officielle.

Certains tableaux sont divisés en deux par les titres « caractéristiques spécifiées » et « caractéristiques non spécifiées ». Sous « caractéristiques non spécifiées » figurent des modes opératoires qui ne sont pas directement liés à une spécification du cahier des charges type. Il s’agit de modes opératoires officiellement reconnus et qui sont à utiliser dans le cadre d’études préalables ou complémentaires et d’expertises.

Pour certaines caractéristiques, le tableau prévoit plusieurs choix ou mentionne « méthode à convenir ». Il est également possible que les documents du marché prévoient des caractéristiques qui ne sont pas reprises dans le tableau ci-dessous. Dans ce cas, il est très important de bien spécifier les contrôles supplémentaires dans les documents du marché.
C. 1. EAU DE GACHAGE

<table>
<thead>
<tr>
<th>Caractéristiques non spécifiées</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyses physique et chimique</td>
<td>NBN EN 1008</td>
<td></td>
</tr>
<tr>
<td>Influence sur le temps de prise et la résistance</td>
<td>NBN EN 1008</td>
<td>Début de prise et fin de prise: sur pâte selon NBN EN 196-3 Résistance à la compression: sur mortier selon NBN EN 196-1</td>
</tr>
</tbody>
</table>

C. 2.1. SOL: CLASSIFICATION

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granularité</td>
<td>CME 01.01</td>
<td>Autres méthodes (mode opératoire à fournir par le laboratoire): sédigraphie RX, granulomètre laser, toute méthode basée sur la loi de Stockes.</td>
</tr>
<tr>
<td>Limites d’Atterberg (w_L, w_P, I_p)</td>
<td>CME 01.03</td>
<td></td>
</tr>
<tr>
<td>Teneur en eau w Sols</td>
<td>NBN EN ISO 17892-1</td>
<td>Autres méthodes: infrarouge, micro-ondes, méthode de chantier, NBN EN ISO 17892-1</td>
</tr>
<tr>
<td>Vitesse sismique dans les sols compacts</td>
<td>CME 01.19</td>
<td></td>
</tr>
</tbody>
</table>

C. 2.2. SOL POUR REMBLAI

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débitement</td>
<td>CME 01.11</td>
<td></td>
</tr>
<tr>
<td>Gonflement</td>
<td>CME 01.12</td>
<td></td>
</tr>
<tr>
<td>- scories LD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- scories EAF (MgO tot. < 5 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- scories EAF (MgO tot. > 5 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- autres pierres artificielles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granularité</td>
<td>CME 01.01</td>
<td></td>
</tr>
<tr>
<td>Limites d’Atterberg (w_L, w_P, I_p)</td>
<td>CME 01.03</td>
<td></td>
</tr>
<tr>
<td>Teneur en matières organiques</td>
<td>NBN B11-256</td>
<td></td>
</tr>
<tr>
<td>présence de matière organiques</td>
<td>NBN EN 1744-1 §15.1</td>
<td></td>
</tr>
<tr>
<td>Teneur en chaux libre (scories LD, scories EAF)</td>
<td>NBN EN 1744-1 §18</td>
<td></td>
</tr>
<tr>
<td>Teneur en eau w Sols</td>
<td>NBN EN ISO 17892-1</td>
<td>Autres méthodes: infrarouge, micro-ondes, méthode de chantier, NBN EN ISO 17892-1</td>
</tr>
<tr>
<td>Teneur en pyrite et taux de cendres</td>
<td>CME 01.18</td>
<td></td>
</tr>
</tbody>
</table>

Caractéristiques non spécifiées

<table>
<thead>
<tr>
<th>Teneur conventionnelle en carbonates attaquables</th>
<th>NBN EN ISO 17892-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>- par perte au feu</td>
<td>CME 01.15</td>
</tr>
</tbody>
</table>
C. 2.3. TERRES POUR GAZONNEMENTS ET PLANTATIONS

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granularité</td>
</tr>
<tr>
<td>Autres méthodes (mode opératoire à fournir par le laboratoire): sédigraphe RX, granulomètre laser, toute méthode basée sur la loi de Stockes.</td>
</tr>
<tr>
<td>PH</td>
</tr>
<tr>
<td>Teneur en azote total</td>
</tr>
<tr>
<td>Teneur en matières organiques</td>
</tr>
<tr>
<td>Teneur en matières sèches</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caractéristiques non spécifiées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse volumique absolue</td>
</tr>
</tbody>
</table>

C. 3. SABLES

Suivant l’application les normes produits suivantes sont d’application:
- NBN EN 12620: Granulats pour bétons
- NBN EN 13043: Granulats pour mélanges hydrocarbonés et enduits superficiels
- NBN EN 13055-1: Granulats légers pour bétons et mortiers
- NBN EN 13055-2: Granulats légers pour mélanges hydrocarbonés, enduits superficiels et pour utilisation en couches traitées et non traitées
- NBN EN 13242: Granulats pour matériaux traités aux liants hydrauliques et matériaux non traités utilisés pour les travaux de génie civil et pour la construction des chaussées

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption d'eau</td>
</tr>
<tr>
<td>Détermination du PSV de la roche mère</td>
</tr>
<tr>
<td>Coefficient d'activité d'un laitier granulé</td>
</tr>
<tr>
<td>Masse volumique sèche en vrac</td>
</tr>
<tr>
<td>Stabilité volumique (Gonflement)</td>
</tr>
<tr>
<td>- scories d'aciérie</td>
</tr>
<tr>
<td>- granulats recyclés</td>
</tr>
<tr>
<td>- mâchefers</td>
</tr>
<tr>
<td>Teneur en matières organiques</td>
</tr>
<tr>
<td>Teneur en chaux libre des scories</td>
</tr>
<tr>
<td>Teneur en fines</td>
</tr>
<tr>
<td>Qualité des fines</td>
</tr>
<tr>
<td>Module de finesse</td>
</tr>
<tr>
<td>Teneur en fragments de coquillages à l'état libre</td>
</tr>
<tr>
<td>Teneur en ion chlore solubles des granulats marins</td>
</tr>
<tr>
<td>Teneur en MgO</td>
</tr>
<tr>
<td>Teneur en soufre total</td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Teneur en sulfate soluble dans l’acide</td>
</tr>
<tr>
<td>Teneur en sulfate soluble dans l’eau</td>
</tr>
<tr>
<td>Granularité</td>
</tr>
<tr>
<td>Masse volumique réelle</td>
</tr>
<tr>
<td>Equivalent de sable</td>
</tr>
<tr>
<td>Coefficient d’écoulement - angularité</td>
</tr>
<tr>
<td>Masse volumique de référence - proctor</td>
</tr>
<tr>
<td>Los Angeles de la roche mère</td>
</tr>
<tr>
<td>Micro Deval de la roche mère</td>
</tr>
<tr>
<td>Réaction alcali-silice</td>
</tr>
<tr>
<td>Teneur en imbrûlés des mâchefers</td>
</tr>
</tbody>
</table>

Caractéristiques non spécifiées

Méthodes d’échantillonnage	NBN EN 932-1	
Réduction en labo	NBN EN 932-2	
Teneur en eau	NBN EN 1097-5	

C. 4. GRAVILLONS

Suivant l’application les normes produits suivantes sont d’application:
- NBN EN 12620: Granulats pour bétons
- NBN EN 13043: Granulats pour mélanges hydrocarbonés et enduits superficiels
- NBN EN 13055-1: Granulats légers pour bétons et mortiers
- NBN EN 13055-2: Granulats légers pour mélanges hydrocarbonés, enduits superficiels et pour utilisation en couches traitées et non traitées
- NBN EN 13242: Granulats pour matériaux traités aux liants hydrauliques et matériaux non traités utilisés pour les travaux de génie civil et pour la construction des chaussées

Caractéristiques spécifiées

<table>
<thead>
<tr>
<th>Absorption d'eau (Granulats de débris, laitier concassé)</th>
<th>NBN EN 1097-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption d'eau pour granulats d'argile expansée</td>
<td>NBN EN 1097-6, Annexe C</td>
</tr>
<tr>
<td>Basicité (rapport CaO/SiO2) pour laitier concassé</td>
<td>NBN EN 196-2</td>
</tr>
<tr>
<td>Basalte "coup de soleil"</td>
<td>NBN EN 1367-3 (+ NBN EN 1097-2)</td>
</tr>
<tr>
<td>Coefficient d’aplatissement</td>
<td>NBN EN 933-3</td>
</tr>
<tr>
<td>Coefficient de polissage accéléré</td>
<td>NBN EN 1097-8</td>
</tr>
<tr>
<td>Constituants augmentant temps de prise et réduit la résistance du béton</td>
<td>NBN EN 1744-1 § 15</td>
</tr>
<tr>
<td>Délitement (pierrres artificielles)</td>
<td>CME 01.11</td>
</tr>
<tr>
<td>Désintégration du silicate bicalcique pour laitier concassé</td>
<td>NBN EN 1744-1 §19.1</td>
</tr>
<tr>
<td>Dureté Mohs (granulats pour ESHP)</td>
<td>NBN EN 101</td>
</tr>
<tr>
<td>Equivalent de sable</td>
<td>NBN EN 933-8+A1</td>
</tr>
<tr>
<td>Essai au bleu de méthylène</td>
<td>NBN EN 933-9+A1</td>
</tr>
<tr>
<td>Gonflement (stabilité volumique)</td>
<td>NBN EN 1744-1 § 19.3</td>
</tr>
<tr>
<td>- scores LD (aciérie)</td>
<td>durée de l'essai 24 h</td>
</tr>
<tr>
<td>- scores EAF (MgO tot < 5 %)</td>
<td>durée de l'essai: 24 h et 7 jours</td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>– scorées EAF (MgO tot < 5 %)</td>
<td></td>
</tr>
<tr>
<td>Matériaux artificiels et machefers traités</td>
<td>CME 01.12.B et C</td>
</tr>
<tr>
<td>Granularité (sau granulats d'argile expansée)</td>
<td>NBN EN 933-1</td>
</tr>
<tr>
<td>Granularité (granulats d'argile expansée)</td>
<td>NBN EN 13055-1 et 2 (NBN EN 933-1)</td>
</tr>
<tr>
<td>Identification des granulats de débris</td>
<td>NBN EN 933-11</td>
</tr>
<tr>
<td>Indice de plasticité (schiste rouge)</td>
<td>CME 01.03 ou NF P94-051</td>
</tr>
<tr>
<td>Instabilité dans l'eau pour laitier concassé</td>
<td>NBN EN 1744-1 §19.2</td>
</tr>
<tr>
<td>Los Angeles, résistance à la fragmentation</td>
<td>NBN EN 1097-2</td>
</tr>
<tr>
<td>Masse volumique sèche (vrac)</td>
<td>NBN EN 1097-3</td>
</tr>
<tr>
<td>Micro-Deval, résistance à l'usure</td>
<td>NBN EN 1097-1</td>
</tr>
<tr>
<td>Pourcentage de surfaces cassées dans les gravillons ou entièrement roulés</td>
<td>NBN EN 933-5</td>
</tr>
<tr>
<td>Préence de matières organiques</td>
<td>NBN EN 1744-1, § 15-1</td>
</tr>
<tr>
<td>Réaction alcali silice</td>
<td>Document de référence Qualiroutes-C-2</td>
</tr>
<tr>
<td>Résistance au gel - dégel (sau pour granulats légers)</td>
<td>NBN EN 1367-1</td>
</tr>
<tr>
<td>Résistance au gel - dégel pour granulats légers</td>
<td>NBN EN 13055-1 et 2, Annexe B</td>
</tr>
<tr>
<td>Stabilité à l’eau (schiste rouge)</td>
<td>CME 04.01</td>
</tr>
<tr>
<td>Teneur en chaux libre (scories LD, scories EAF)</td>
<td>NBN EN 1744-1 §18</td>
</tr>
<tr>
<td>Teneur en fines (sauf granulats d'argile expansée)</td>
<td>NBN EN 933-1</td>
</tr>
<tr>
<td>Teneur en fragments de coquillage (gravillons pour bétons)</td>
<td>NBN EN 933-7</td>
</tr>
<tr>
<td>Teneur en chlorure</td>
<td>NBN EN 1744-1 §7(marins), §8, §9</td>
</tr>
<tr>
<td>Teneur en MgO (scories EAF)</td>
<td>NBN EN 196-2</td>
</tr>
<tr>
<td>Teneur en soufre total</td>
<td>NBN EN 1744-1 §11</td>
</tr>
<tr>
<td>Teneur en sulfates solubles dans l'eau</td>
<td>NBN EN 1744-1 §10</td>
</tr>
<tr>
<td>Teneur en sulfates solubles dans l'acide</td>
<td>NBN EN 1744-1 §12</td>
</tr>
</tbody>
</table>

Caractéristiques non spécifiées

- Réduction - méthodes d'éch
 - NBN EN 932-1
- Réduction labo
 - NBN EN 932-2
- Teneur en eau
 - NBN EN 1097-5
- Sensibilité au gel-dégel spécifique aux granulats dont la résistance au gel-dégel est déclarée f10
 - CME 01.25
C. 5. GRAVES

Les graves sont spécifiés selon les caractéristiques prévues dans les normes suivantes:
- \(d = 0 \) et \(D \geq 45 \) mm: NBN EN 13043 (Granulats pour mélanges hydrocarbonés et pour enduits superficiels utilisés dans la construction des chaussées, aérodromes et d'autres zones de circulation) ou NBN EN 12620 (Granulats pour béton)
- \(D \leq 90 \) mm: NBN EN 13108-8 (Mélanges bitumineux: spécifications de matériaux. Partie 8, agrégats d'enrobés)
- \(D > 6,3 \) mm: NBN EN 13242 (Granulats pour matériaux traités aux liants hydrauliques et matériaux non traités utilisés pour les travaux de génie civil et pour la construction des chaussées)

C. 5.3.2. AGREGATS D’ENROBÉS BITUMINEUX (AEB)

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneur en liant</td>
<td>NBN EN 12697-1</td>
</tr>
<tr>
<td>Teneur en gravillons</td>
<td>NBN EN 933-1</td>
</tr>
<tr>
<td>Teneur en fines</td>
<td>NBN EN 933-1</td>
</tr>
<tr>
<td>Pénétrabilité de bitume récupéré</td>
<td>NBN EN 1426</td>
</tr>
<tr>
<td>Teneur en matériaux étrangers</td>
<td>NBN EN 12697-42</td>
</tr>
<tr>
<td>Origine des agrégats d’enrobés</td>
<td>à déclarer par le fournisseur</td>
</tr>
<tr>
<td>- famille d’enrobés</td>
<td>NBN EN 13043</td>
</tr>
<tr>
<td>- natures des granulats</td>
<td>NBN EN 13043</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caractéristiques non spécifiées</th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>méthode d’échantillonnage</td>
<td>NBN EN 932-1</td>
</tr>
<tr>
<td>réduction d’un échantillon</td>
<td>NBN EN 932-2</td>
</tr>
</tbody>
</table>

C. 5.4. SPÉCIFICATIONS DES GRAVES SELON LEUR UTILISATION

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granularité</td>
<td>NBN EN 933-1</td>
</tr>
<tr>
<td>Teneur en fines</td>
<td>NBN EN 933-1</td>
</tr>
<tr>
<td>Qualité des fines (MB)</td>
<td>NBN EN 933-9+A1</td>
</tr>
<tr>
<td>Résistance à l'usure (Micro-Deval)</td>
<td>NBN EN 1097-1</td>
</tr>
<tr>
<td>Résistance à la fragmentation (Los-Angeles)</td>
<td>NBN EN 1097-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caractéristiques non spécifiées</th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>méthode d’échantillonnage</td>
<td>NBN EN 932-1</td>
</tr>
<tr>
<td>réduction d’un échantillon</td>
<td>NBN EN 932-2</td>
</tr>
</tbody>
</table>

C. 5.4.1. GRAVE POUR SOUS-FONDATION

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilité au gel-dégel</td>
<td>NBN EN 1367-1</td>
</tr>
<tr>
<td>Stabilité volumique</td>
<td>NBN EN 1744-1</td>
</tr>
<tr>
<td>Sulfates solubles dans l'eau</td>
<td>NBN EN 1744-1</td>
</tr>
</tbody>
</table>

produits selon C. 4.3.4 et C. 4.3.13
graves recyclées
C. 5.4.2 GRAVE POUR FONDATION ET EMPIERREMENT

<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l’essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilité au gel-dégel</td>
<td>NBN EN 1367-1</td>
<td></td>
</tr>
<tr>
<td>Stabilité volumique</td>
<td>NBN EN 1744-1</td>
<td></td>
</tr>
<tr>
<td>Sulfates solubles dans l'eau</td>
<td>NBN EN 1744-1</td>
<td></td>
</tr>
<tr>
<td>Pourcentage en masse de grains semi-concassés ou entièrement concassés</td>
<td>NBN EN 933-5</td>
<td></td>
</tr>
<tr>
<td>Pourcentage en masse de grains entièrement roulés</td>
<td>NBN EN 933-5</td>
<td></td>
</tr>
<tr>
<td>Coefficient d’aplatissement</td>
<td>NBN EN 933-3</td>
<td></td>
</tr>
<tr>
<td>Soufre total</td>
<td>NBN EN 1744-1</td>
<td></td>
</tr>
<tr>
<td>Teneur en matières organiques</td>
<td>NBN EN 1744-1</td>
<td></td>
</tr>
</tbody>
</table>

C. 5.4.3. GRAVE POUR BÉTON MAIGRE

<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l’essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilité au gel-dégel</td>
<td>NBN EN 1367-1</td>
<td></td>
</tr>
<tr>
<td>Stabilité volumique</td>
<td>NBN EN 1744-1</td>
<td></td>
</tr>
<tr>
<td>Sulfates solubles dans l'eau</td>
<td>NBN EN 1744-1</td>
<td></td>
</tr>
<tr>
<td>Coefficient d’aplatissement</td>
<td>NBN EN 933-3</td>
<td></td>
</tr>
<tr>
<td>Soufre total</td>
<td>NBN EN 1744-1</td>
<td></td>
</tr>
<tr>
<td>Masse volumique réelle</td>
<td>NBN EN 1097-6</td>
<td></td>
</tr>
<tr>
<td>Constituants augmentant le temps de prise et réduisant la résistance du béton</td>
<td>NBN EN 1744-1</td>
<td></td>
</tr>
</tbody>
</table>

C. 5.4.4. GRAVE POUR GRAVE-BITUME

<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l’essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilité dimensionnelle des scories d'aciéries</td>
<td>NBN EN 1744-1</td>
<td></td>
</tr>
<tr>
<td>Coefficient d’aplatissement</td>
<td>NBN EN 933-3</td>
<td></td>
</tr>
</tbody>
</table>

C. 6. MATÉRIAUX POUR REMBLAIS

C. 6.1. BLOCS LÉGERS À BASE DE POLYSTYRÈNE EXPANSÉ

Les essais sont ceux prévus par la norme NF T56-201

C. 6.3. GRANULATS D’ARGILE EXPANSÉE POUR REMBLAI

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibre des granulats</td>
<td>NBN EN 933-1 + NBN EN 13055-1</td>
<td></td>
</tr>
<tr>
<td>Granulométrie</td>
<td>NBN EN 933-1</td>
<td></td>
</tr>
<tr>
<td>Forme des granulats</td>
<td>NBN EN 933-5</td>
<td></td>
</tr>
<tr>
<td>Masse volumique sèche en vrac (apparente) non compactée</td>
<td>NBN EN 1097-3</td>
<td></td>
</tr>
<tr>
<td>Masse volumique apparente sèche et compactée</td>
<td>NBN EN 13055-2 Annexe A</td>
<td>valeur à déclarer par le fournisseur</td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
<td>COMMENTAIRES ET AJOUTS</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Masse volumique apparente humide et compactée</td>
<td>NBN EN 13055-2 Annexe A + NBN EN 1097-6, annexe C</td>
<td>masse volumique sèche compactée majorée par la valeur d'absorption d'eau après 28 jours MVA<sub>H</sub>=MVA<sub>S</sub>(1+AE/100)</td>
</tr>
<tr>
<td>Humidité</td>
<td>NBN EN 1097-5</td>
<td></td>
</tr>
<tr>
<td>Angle de frottement interne</td>
<td>NBN EN 15732 Annexe A</td>
<td></td>
</tr>
<tr>
<td>Vides entre les grains compactés</td>
<td>NBN EN 1097-3</td>
<td></td>
</tr>
<tr>
<td>Compression / Capacité de portance</td>
<td>NBN EN 13055-2, annexe A</td>
<td></td>
</tr>
<tr>
<td>Résistance au gel-dégel</td>
<td>NBN EN 13055-2, annexe B</td>
<td></td>
</tr>
<tr>
<td>Caractéristiques non spécifiées</td>
<td></td>
<td></td>
</tr>
<tr>
<td>méthode d'échantillonnage</td>
<td>NBN EN 932-1</td>
<td></td>
</tr>
<tr>
<td>réduction d'un échantillon</td>
<td>NBN EN 932-2</td>
<td></td>
</tr>
</tbody>
</table>

C. 7. CENDRES VOLANTES

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constance de qualité (essai Opticompact)</td>
<td>CME 04.08</td>
<td></td>
</tr>
<tr>
<td>Pourcentage d'imbrûlés – Perte au feu</td>
<td>NBN EN 196-2</td>
<td>Temps de combustion: 1h</td>
</tr>
<tr>
<td>Teneur conventionnelle en chaux libre</td>
<td>NBN EN 451-1</td>
<td></td>
</tr>
<tr>
<td>Teneur en SO<sub>4</sub>⁻ (SO<sub>3</sub>)</td>
<td>NBN EN 196-2</td>
<td></td>
</tr>
<tr>
<td>Caractéristiques non spécifiées</td>
<td>NBN EN 196-2</td>
<td></td>
</tr>
<tr>
<td>Composition chimique</td>
<td>NBN EN 196-2</td>
<td></td>
</tr>
<tr>
<td>Finesse (tamisage humide)</td>
<td>NBN EN 451-2</td>
<td></td>
</tr>
<tr>
<td>Indice d'activité</td>
<td>NBN EN 196-1</td>
<td></td>
</tr>
<tr>
<td>Masse volumique absolue</td>
<td>NBN EN 196-6</td>
<td></td>
</tr>
<tr>
<td>Stabilité Le Chatelier</td>
<td>NBN EN 196-3</td>
<td></td>
</tr>
<tr>
<td>Teneur en alcalis</td>
<td>NBN EN 196-2 ou fluorescence X</td>
<td></td>
</tr>
<tr>
<td>Teneur en chlorure</td>
<td>NBN EN 196-2</td>
<td></td>
</tr>
<tr>
<td>Teneur en oxyde libre</td>
<td>NBN EN 451-1</td>
<td></td>
</tr>
</tbody>
</table>

C. 8. CIMENT

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse chimique</td>
<td>NBN EN 196-2</td>
<td>Dosage de la perte au feu, du résidu insoluble, des sulfates, des ions chlorures, des sulfures Si analyse complète y compris teneur en alcalis: fluorescence X</td>
</tr>
<tr>
<td>Chaleur d'hydratation (par Langavant – Méthode semi-adiabatique)</td>
<td>NBN EN 196-9</td>
<td></td>
</tr>
<tr>
<td>Chaleur d'hydratation (par dissolution)</td>
<td>NBN EN 196-8</td>
<td></td>
</tr>
<tr>
<td>Clarté du ciment blanc</td>
<td>CME 05.01</td>
<td></td>
</tr>
</tbody>
</table>
Caractéristiques mesurées ou nom de l’essai

<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l’essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Détermination quantitative des constituants</td>
<td>NBN EN 196-4</td>
<td></td>
</tr>
<tr>
<td>Chrome hexavalent</td>
<td>NBN EN 196-10</td>
<td></td>
</tr>
<tr>
<td>Surface spécifique Blaine (Finesse et refus au tamis de 200 µm)</td>
<td>NBN EN 196-6</td>
<td></td>
</tr>
<tr>
<td>Pouzzolanicité des ciments pouzzolaniques</td>
<td>NBN EN 196-5</td>
<td></td>
</tr>
<tr>
<td>Résistance mécanique</td>
<td>NBN EN 196-1</td>
<td></td>
</tr>
<tr>
<td>Temps de prise et stabilité</td>
<td>NBN EN 196-3</td>
<td></td>
</tr>
<tr>
<td>Consistance normalisée</td>
<td>NBN EN 196-3</td>
<td></td>
</tr>
<tr>
<td>Stabilité Le Chatelier</td>
<td>NBN EN 196-6</td>
<td></td>
</tr>
<tr>
<td>Masse volumique absolue</td>
<td>NBN EN 196-6</td>
<td></td>
</tr>
<tr>
<td>Teneur en Al₂O₃ et en C₃A (CEM I HSR)</td>
<td>NBN EN 196-2</td>
<td></td>
</tr>
<tr>
<td>Teneur en laitier (CEM III/B HSR, CEM III/C HSR, CEM III/A)</td>
<td>CEN/TR 196-4</td>
<td></td>
</tr>
<tr>
<td>Teneur en laitier et en cendres volantes (CEM V (S-V) HSR)</td>
<td>CEN/TR 196-4</td>
<td></td>
</tr>
<tr>
<td>Teneur en Nₐ₂O équivalent (Ciments LA)</td>
<td>NBN EN 196-2</td>
<td></td>
</tr>
</tbody>
</table>

C. 9. CHAUX

Caractéristiques spécifiées

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse chimique</td>
<td>NBN EN 459-2</td>
</tr>
<tr>
<td>Caractéristiques physiques et mécaniques</td>
<td>NBN EN 459-2</td>
</tr>
<tr>
<td>Granularité</td>
<td>NBN EN 459-2</td>
</tr>
<tr>
<td>Teneur en oxydes de calcium disponibles</td>
<td>NBN EN 459-2</td>
</tr>
<tr>
<td>Vitesse d’hydratation – réactivité tₜ₀</td>
<td>NBN EN 459-2</td>
</tr>
<tr>
<td>Caractéristique non spécifiée</td>
<td></td>
</tr>
</tbody>
</table>

C. 10. AUTRES ADDITIFS POUR TRAITEMENT DE SOLS OU DE GRANULATS

C. 10.1. LIANTS HYDRAULIQUES ROUTIERS

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse chimique</td>
<td>NBN EN 196-2</td>
</tr>
<tr>
<td>Dosage des sulfates, des ions chlores, des sulfures</td>
<td>NBN EN 196-2</td>
</tr>
<tr>
<td>Si analyse complète y compris teneur en alcalis: fluorescence X</td>
<td></td>
</tr>
<tr>
<td>Finesse et refus au tamis de 200 µm</td>
<td>NBN EN 196-6</td>
</tr>
<tr>
<td>Granularité par méthode laser: determination du refus</td>
<td>ISO 13320-1</td>
</tr>
<tr>
<td>Pouzzolanicité des ciments pouzzolaniques</td>
<td>NBN EN 196-5</td>
</tr>
<tr>
<td>Résistance mécanique</td>
<td>NBN EN 196-1</td>
</tr>
<tr>
<td>Temps de début de prise et stabilité</td>
<td>NBN EN 196-3</td>
</tr>
<tr>
<td>Consistance normalisée</td>
<td>NBN EN 196-3</td>
</tr>
<tr>
<td>Stabilité pour LHR avec SO₃ > 4 % en masse</td>
<td>NBN EN 459-2</td>
</tr>
<tr>
<td>Test à l’eau froide</td>
<td>NBN EN 196-6</td>
</tr>
<tr>
<td>Masse volumique absolue</td>
<td>NBN EN 196-6</td>
</tr>
</tbody>
</table>
CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gonflement</td>
<td>NBN EN 196-3</td>
<td></td>
</tr>
</tbody>
</table>

Caractéristiques non spécifiées

| Méthodes de prélèvement et d’échantillonnage des liants hydrauliques | NBN EN 196-7 |

C. 10.2. FINES DE SCORIES BOF ET EAF

Caractéristiques spécifiées

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneur en chaux libre</td>
<td>NBN EN 1744-1</td>
<td></td>
</tr>
<tr>
<td>Teneur en eau</td>
<td>NBN EN 1097-5</td>
<td></td>
</tr>
<tr>
<td>Teneur en SiO₂ Al₂O₃, Fe₂O₃</td>
<td>Fluorescence X</td>
<td></td>
</tr>
<tr>
<td>Teneur en MgO</td>
<td>Fluorescence X</td>
<td></td>
</tr>
<tr>
<td>Teneur en SO₃</td>
<td>Fluorescence X</td>
<td></td>
</tr>
<tr>
<td>Teneur en CaO total</td>
<td>Fluorescence X</td>
<td></td>
</tr>
</tbody>
</table>

Caractéristiques non spécifiées

C. 11.1. FILLER POUR ENROBÉS HYDROCARBONÉS

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse volumique réelle</td>
<td>NBN EN 1097-7</td>
<td></td>
</tr>
<tr>
<td>Granulométrie</td>
<td>NBN EN 933-10</td>
<td></td>
</tr>
<tr>
<td>Porosité Rigden</td>
<td>NBN EN 1097-4</td>
<td></td>
</tr>
<tr>
<td>Nombre bitume</td>
<td>NBN EN 13179-2</td>
<td></td>
</tr>
<tr>
<td>Sensibilité à l'eau</td>
<td>NBN EN 1744-4</td>
<td></td>
</tr>
<tr>
<td>Teneur en fines nocives</td>
<td>NBN EN 933-9+A1</td>
<td></td>
</tr>
<tr>
<td>Teneur en eau</td>
<td>NBN EN 1097-5</td>
<td></td>
</tr>
<tr>
<td>Teneur en carbonate de calcium</td>
<td>NBN EN 196-21</td>
<td></td>
</tr>
<tr>
<td>Teneur en chaux éteinte</td>
<td>NBN EN 459-2</td>
<td></td>
</tr>
</tbody>
</table>

C. 12.1. BITUME ROUTIER (NBN EN 12591)

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pénétrabilité à l’aiguille (25 °C; 100 g; 5 s)</td>
<td>NBN EN 1426</td>
<td></td>
</tr>
<tr>
<td>Point de ramollissement Anneau & Bille</td>
<td>NBN EN 1427</td>
<td></td>
</tr>
<tr>
<td>Indice de pénétrabilité (Ip)</td>
<td>NBN EN 12591</td>
<td></td>
</tr>
<tr>
<td>Viscosité cinématique à 135 °C</td>
<td>NBN EN 12595</td>
<td></td>
</tr>
<tr>
<td>Point de fragilité selon Fraass</td>
<td>NBN EN 12593</td>
<td></td>
</tr>
<tr>
<td>Solubilité</td>
<td>NBN EN 12592</td>
<td></td>
</tr>
<tr>
<td>Point d’éclaire</td>
<td>NBN EN ISO 2592</td>
<td>méthode Cleveland à vase ouvert</td>
</tr>
<tr>
<td>Résistance au durcissement (RTFOT) à 163 °C</td>
<td>NBN EN 12607-1</td>
<td></td>
</tr>
</tbody>
</table>

C. 12.3. BITUME POLYMERE NEUF (NBN EN 14023)

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Préparation d'échantillons de bitume polymère</td>
<td>CME 08.45</td>
<td></td>
</tr>
<tr>
<td>Pénétrabilité à l’aiguille (25 °C; 100 g; 5 s)</td>
<td>NBN EN 1426</td>
<td></td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
<td>COMMENTAIRES ET AJOUTS</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Point de ramollissement Anneau & Bille</td>
<td>NBN EN 1427</td>
<td></td>
</tr>
<tr>
<td>Ductilité à 5 °C</td>
<td>CME 08.36</td>
<td></td>
</tr>
<tr>
<td>Cohésion par force ductilité</td>
<td>NBN EN 13589</td>
<td>complété par NBN EN 13703</td>
</tr>
<tr>
<td>Point de fragilité selon Fraass</td>
<td>NBN EN 12593</td>
<td></td>
</tr>
<tr>
<td>Retour élastique à 25°C</td>
<td>NBN EN 13398</td>
<td></td>
</tr>
<tr>
<td>Point d’éclair</td>
<td>NBN EN ISO 2592</td>
<td>méthode Cleveland à vase ouvert</td>
</tr>
<tr>
<td>Résistance au durcissement (RTFOT) à 163 °C</td>
<td>NBN EN 12607-1</td>
<td></td>
</tr>
<tr>
<td>RCAT</td>
<td>NBN EN 15323</td>
<td></td>
</tr>
<tr>
<td>Valeur DSR</td>
<td>NBN EN 14770</td>
<td></td>
</tr>
<tr>
<td>Valeur BBR</td>
<td>NBN EN 14771</td>
<td></td>
</tr>
<tr>
<td>Viscosité dynamique à 135, 150, 165 et 180 °C</td>
<td>NBN EN 13302</td>
<td></td>
</tr>
</tbody>
</table>

C. 12.4. BITUME À INDICE DE PÉNÉTRATION POSITIF (PREN 13924-2:2009)

Pénétrabilité à l'aiguille (25 °C; 100g; 5 s)	NBN EN 1426
Point de ramollissement Anneau & Bille	NBN EN 1427
Viscosité cinématique à 135 °C	NBN EN 12595
Masse volumique relative (à 25 °C)	NBN EN 15326
Solubilité	NBN EN 12592
Point de fragilité selon Fraass	NBN EN 12593
Indice de pénétrabilité (Ip)	NBN EN 12591
Résistance au durcissement (RTFOT) à 163 °C	NBN EN 12607-1
Valeur DSR	NBN EN 14770
Valeur BBR	NBN EN 14771

C. 12.5. BITUME FLUXÉ

Viscosité dynamique à 60 °C	NBN EN 13302
Solubilité	NBN EN 12592
Point d’éclair	NBN EN ISO 2719 méthode Pensky-Martens en vase clos
Distillation à 225 °C, 315 °C et 360 °C	NBN EN 13358
Stabilisation	CME 08.46
Pénétrabilité à l’aiguille (25°C; 100g; 5s)	NBN EN 1426

C. 12.6. BITUME FLUXÉ À BASE DE BITUME POLYMÈRE

<p>| Temps d'écoulement (Viscosité STV) | NBN EN 13357 |
| Distillation à 225 °C, 315 °C et 360 °C | NBN EN 13358 |
| Stabilisation | CME 08.46 |
| Pénétrabilité à l’aiguille (25 °C; 100g; 5s) | NBN EN 1426 |</p>
<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point de ramollissement anneau & bille</td>
<td>NBN EN 1427</td>
<td></td>
</tr>
<tr>
<td>Cohésion par force ductilité à 5 °C</td>
<td>NBN EN 13589</td>
<td>complété par NBN EN 13703</td>
</tr>
<tr>
<td>Retour élastique à 25 °C</td>
<td>NBN EN 13398</td>
<td></td>
</tr>
</tbody>
</table>

C. 12.7. EMULSION ANIONIQUE DE BITUME

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Référence NBN EN...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indice de rupture</td>
<td>13075-1</td>
</tr>
<tr>
<td>Polarité</td>
<td>1430</td>
</tr>
<tr>
<td>pH</td>
<td>12850</td>
</tr>
<tr>
<td>Temps d'écoulement 2 mm à 40 °C</td>
<td>12846</td>
</tr>
<tr>
<td>Teneur en liant</td>
<td>1428</td>
</tr>
<tr>
<td>Résidu sur tamis de 0.16 mm</td>
<td>1429</td>
</tr>
<tr>
<td>Méthode de récupération du liant</td>
<td>13074-1, 13074-2</td>
</tr>
<tr>
<td>Pénétrabilité à l'aiguille (25 °C; 100 g; 5 s)</td>
<td>1426</td>
</tr>
<tr>
<td>Masse volumique relative (à 25 °C)</td>
<td>15326</td>
</tr>
<tr>
<td>Solubilité</td>
<td>12592</td>
</tr>
</tbody>
</table>

C. 12.8. EMULSION CATIONIQUE DE BITUME (NBN EN 13808)

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Référence NBN EN...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarité (émulsion)</td>
<td>1430</td>
</tr>
<tr>
<td>pH (émulsion)</td>
<td>12850</td>
</tr>
<tr>
<td>Teneur en liant (par teneur en eau)</td>
<td>1428</td>
</tr>
<tr>
<td>Indice de rupture (émulsion)</td>
<td>13075-1</td>
</tr>
<tr>
<td>Propriétés perceptibles</td>
<td>1425</td>
</tr>
<tr>
<td>Résidu sur tamis de 0.5 mm</td>
<td>1429</td>
</tr>
<tr>
<td>Temps d'écoulement 2 mm à 40 °C</td>
<td>12846</td>
</tr>
<tr>
<td>Temps d'écoulement 4 mm à 40 °C</td>
<td>12846</td>
</tr>
<tr>
<td>Récupération du liant d'une émulsion</td>
<td>13074-1, 13074-2</td>
</tr>
<tr>
<td>Pénétrabilité à l'aiguille (25 °C; 100 g; 5 s)</td>
<td>1426</td>
</tr>
<tr>
<td>Point de ramollissement anneau & bille</td>
<td>1427</td>
</tr>
<tr>
<td>Retour élastique à 25 °C</td>
<td>13398</td>
</tr>
</tbody>
</table>

C. 12.11. BITUME DUR (NBN EN 13924)

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Référence NBN EN...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pénétrabilité à l'aiguille (25 °C; 100 g; 5 s)</td>
<td>1426</td>
</tr>
<tr>
<td>Point de ramollissement Anneau & Bille</td>
<td>1427</td>
</tr>
<tr>
<td>Indice de pénétrabilité (Ip)</td>
<td>12591</td>
</tr>
<tr>
<td>Viscosité cinématique à 135 °C</td>
<td>12595</td>
</tr>
<tr>
<td>Point de fragilité selon Fraass</td>
<td>12593</td>
</tr>
<tr>
<td>Solubilité</td>
<td>12592</td>
</tr>
<tr>
<td>Point d'éclair</td>
<td>NBN EN ISO 2592</td>
</tr>
<tr>
<td>Résistance au durcissement (RTFOT) à 163 °C</td>
<td>NBN EN 12607-1</td>
</tr>
</tbody>
</table>

Q. 12
C. 12.12. ADDITIFS POUR LIANT (POLYOLÉFINES, ASPHALTE DE TRINIDAD, BITUME NATUREL, BITUME À HAUTE DURETÉ)

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur DSR</td>
<td>NBN EN 14770</td>
<td></td>
</tr>
<tr>
<td>Valeur BBR</td>
<td>NBN EN 14771</td>
<td></td>
</tr>
<tr>
<td>Teneur en eau (polyoléfines)</td>
<td>NBN EN 1097-5</td>
<td>appliquer la norme granulats aux polyoléfines</td>
</tr>
<tr>
<td>Teneur en parties métalliques (polyoléfines)</td>
<td>CME 08.38</td>
<td></td>
</tr>
<tr>
<td>Teneur en PVC (polyoléfines)</td>
<td>CME 08.40</td>
<td></td>
</tr>
<tr>
<td>Teneur en polyéthylène (polyoléfines)</td>
<td>CME 08.39</td>
<td></td>
</tr>
<tr>
<td>Passant aux tamis de 4 mm et 2 mm (polyoléfines)</td>
<td>NBN EN 933-1</td>
<td></td>
</tr>
<tr>
<td>Pénétrabilité à l'aiguille (25°C; 100g; 5s)</td>
<td>NBN EN 1426</td>
<td></td>
</tr>
<tr>
<td>Point de ramollissement Anneau & Bille</td>
<td>NBN EN 1427</td>
<td>utiliser de l’huile de silicone pour le bain</td>
</tr>
<tr>
<td>Solubilité</td>
<td>NBN EN 12592</td>
<td></td>
</tr>
<tr>
<td>Teneur en cendres (asphaltes naturels)</td>
<td>BS 2000-223</td>
<td></td>
</tr>
<tr>
<td>Masse volumique relative (à 25 °C)</td>
<td>NBN EN 1097-7</td>
<td>solvant = toluène</td>
</tr>
</tbody>
</table>

C. 12.13. LIANT À BASE DE RÉSINE

<table>
<thead>
<tr>
<th>Résistance à la traction</th>
<th>CME 08.37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allongement à la rupture</td>
<td>CME 08.37</td>
</tr>
</tbody>
</table>

C. 12.14. EMULSION À BASE DE LIANT SYNTHÉTIQUE CLAIR

<table>
<thead>
<tr>
<th>pH (émulsion)</th>
<th>NBN EN 12850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneur en eau (émulsion)</td>
<td>NBN EN 1428</td>
</tr>
<tr>
<td>Stabilisation</td>
<td>NBN EN 13074-2</td>
</tr>
<tr>
<td>Pénétrabilité à l’aiguille (25 °C; 100 g; 5 s)</td>
<td>NBN EN 1426</td>
</tr>
<tr>
<td>Point de ramollissement anneau & bille</td>
<td>NBN EN 1427</td>
</tr>
<tr>
<td>Ductilité à 5 °C</td>
<td>CME 08.36</td>
</tr>
<tr>
<td>Point de fragilité selon Fraass</td>
<td>NBN EN 12593</td>
</tr>
<tr>
<td>Retour élastique à 25 °C</td>
<td>NBN EN 13398</td>
</tr>
</tbody>
</table>

C. 12.20. LIANTS PIGMENTABLES

<table>
<thead>
<tr>
<th>Pénétrabilité à l’aiguille (25 °C; 100 g; 5 s)</th>
<th>NBN EN 1426</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point de ramollissement anneau & bille</td>
<td>NBN EN 1427</td>
</tr>
<tr>
<td>Retour élastique à 25 °C</td>
<td>NBN EN 13398</td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L'ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Solubilité</td>
<td>NBN EN 12592</td>
</tr>
<tr>
<td>Point d'éclair</td>
<td>NBN EN ISO 2592</td>
</tr>
<tr>
<td>Point de fragilité selon Fraass</td>
<td>NBN EN 12593</td>
</tr>
</tbody>
</table>

C. 12.21. LIANT SPÉCIAL POUR JOINT (NBN EN 14188-1)

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse volumique</td>
<td>NBN EN 13880-1</td>
</tr>
<tr>
<td>Pénétration au cône</td>
<td>NBN EN 13880-2</td>
</tr>
<tr>
<td>Pénétrabilité et retour élastique</td>
<td>NBN EN 13880-3</td>
</tr>
<tr>
<td>Point de ramollissement Anneau et Bille</td>
<td>NBN EN 1427</td>
</tr>
<tr>
<td>Résistance au fluage</td>
<td>NBN EN 13880-5</td>
</tr>
<tr>
<td>Cohésion/adhésion</td>
<td>NBN EN 13880-10</td>
</tr>
</tbody>
</table>

C. 13.1. MORTIER DE CIMENT

Les essais sont ceux prévus dans la NBN EN 998-2 (mortiers de maçonnerie) ou NBN EN 998-1 (mortiers d'enduit à base de liant hydraulique)

C. 13.2. MORTIER DE RÉPARATION À BASE DE LIANT HYDRAULIQUE

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la compression</td>
<td>NBN EN 12190</td>
</tr>
<tr>
<td>Adhérence</td>
<td>NBN EN 1542</td>
</tr>
<tr>
<td>Teneur en ions chlorures</td>
<td>NBN EN 1015-17</td>
</tr>
<tr>
<td>Absorption capillaire</td>
<td>NBN EN 13057</td>
</tr>
<tr>
<td>Résistance à la carbonatation</td>
<td>NBN EN 13295</td>
</tr>
<tr>
<td>Durabilité: compatibilité thermique avec sels de déverglaçage</td>
<td>NBN EN 13687-1</td>
</tr>
<tr>
<td>Essai d'aptitude à l'utilisation</td>
<td>PTV 563</td>
</tr>
</tbody>
</table>

C. 13.3. MORTIERS DE RÉPARATION À BASE DE RÉSINE

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la compression</td>
<td>NBN EN 12190</td>
</tr>
<tr>
<td>Adhérence</td>
<td>NBN EN 1542</td>
</tr>
<tr>
<td>Absorption capillaire</td>
<td>NBN EN 13057</td>
</tr>
<tr>
<td>Durabilité aux sels de déverglaçage</td>
<td>NBN EN 13687-1</td>
</tr>
<tr>
<td>Durabilité: compatibilité avec pluie d'orage</td>
<td>NBN EN 13687-2</td>
</tr>
<tr>
<td>Essai d'aptitude à l'utilisation</td>
<td>PTV 563</td>
</tr>
</tbody>
</table>

C. 13.4. REVÊTEMENT DE PROTECTION DES ARMATURES CONTRE LA CORROSION

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Résistance à la corrosion</td>
<td>NBN EN 15183</td>
</tr>
<tr>
<td>Adhérence par cisaillement</td>
<td>NBN EN 15184</td>
</tr>
<tr>
<td>Température de transition vitreuse</td>
<td>NBN EN 12614</td>
</tr>
</tbody>
</table>

C. 13.5. MORTIERS DE CALAGE, DE BOURRAGE ET DE SCELLEMENT À BASE DE LIANTS HYDRAULIQUES

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spécifications des mortiers de calage, de bourrage et de scellement à base de liants hydrauliques</td>
<td>PTV 566</td>
</tr>
</tbody>
</table>

C. 14. BÉTON

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la compression</td>
<td>Document de référence Qualiroutes QR-C-2</td>
</tr>
<tr>
<td>Rapport E/C</td>
<td>Application des normes NBN EN 206-1 et NBN B15-001</td>
</tr>
<tr>
<td>Absorption d’eau</td>
<td>CME 53.13</td>
</tr>
<tr>
<td>Teneur en chlorures</td>
<td>Uniquement pour les revêtements en béton de ciment</td>
</tr>
<tr>
<td>Teneur en alcali</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caractéristiques non spécifiées</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition du béton frais</td>
<td>NBN B 15-210</td>
</tr>
<tr>
<td>Teneur en eau du béton frais</td>
<td>CME 53.12</td>
</tr>
<tr>
<td></td>
<td>Uniquement pour les revêtements en béton de ciment</td>
</tr>
</tbody>
</table>

C. 15. FIBRES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneur en cellulose</td>
<td>CME 35.01</td>
</tr>
<tr>
<td>PH</td>
<td>CME 35.02</td>
</tr>
<tr>
<td>Longueur</td>
<td>Méthode à convenir</td>
</tr>
</tbody>
</table>

C. 16. ACIER

C. 16.1. GOUJON, BARRE D’ANCORAGE, BERCEAU

C. 16.2. ACIER POUR REVÊTEMENT EN BETON ARMÉ CONTINU

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>essai de cintrage</td>
<td>CME 09.01</td>
</tr>
</tbody>
</table>

C. 16.4. ACIER POUR BÉTON ARMÉ

C. 16.5. ACIER DE PRÉCONTRAINE
<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traction</td>
<td>NBN EN ISO 15630-3</td>
<td></td>
</tr>
<tr>
<td>– charge de rupture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– limite conventionnelle d’élasticité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– allongement sous charge maximale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– diagramme charge-allongement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section transversale</td>
<td>NBN EN ISO 15630-3</td>
<td></td>
</tr>
<tr>
<td>Pas de toronnage</td>
<td>NBN EN ISO 15630-3</td>
<td></td>
</tr>
<tr>
<td>Rectitude</td>
<td>NBN EN ISO 15630-3</td>
<td></td>
</tr>
<tr>
<td>Profondeur des empreintes (fil et toron)</td>
<td>NBN EN ISO 15630-3</td>
<td></td>
</tr>
<tr>
<td>Aptitude au pliage alterné (fil)</td>
<td>NBN EN ISO 15630-3</td>
<td></td>
</tr>
<tr>
<td>Vérification de la galvanisation</td>
<td>NBN EN ISO 15630-3</td>
<td></td>
</tr>
<tr>
<td>– épaisseur (galvanisé)</td>
<td>PTV 312</td>
<td></td>
</tr>
<tr>
<td>– continuité (galvanisé)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– adhérence du revêtement (galvanisé)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relaxation</td>
<td>NBN EN ISO 15630-3</td>
<td>essai à 70% F’m pendant 1000 hrs</td>
</tr>
<tr>
<td>Fatigue</td>
<td>NBN EN ISO 15630-3</td>
<td>essai à Fmax = 80% F’m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>△F = 200 MPa x S₀ (toron lisse et fil lisse)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>△F = 180 MPa x S₀ (toron à empreintes et fil à empreintes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>△F = 190 MPa x S₀ (toron protégé gainé type P)</td>
</tr>
<tr>
<td>Corrosion</td>
<td>NBN EN ISO 15630-3</td>
<td>Solution A</td>
</tr>
<tr>
<td>Traction déviée (pour torons ≥ 12.5 mm)</td>
<td>NBN EN ISO 15630-3</td>
<td>Le coefficient D est calculé comme la moyenne des résultats individuels des 5 échantillons. Toutefois, si l’écart-type des 5 valeurs D est supérieur à 15% (s > 15) de leur valeur moyenne, 5 éprouvettes supplémentaires sont essayées ; la valeur individuelle la plus élevée et la plus basse de la série des 10 résultats sont écarteres et le coefficient D est alors la moyenne des 8 résultats restants (sans se préoccuper de la valeur de l’écart-type sur les 8 échantillons).</td>
</tr>
<tr>
<td>Conformité des matériaux de base de la gaine, du matériau de remplissage et du comportement du toron protégé gainé</td>
<td>NBN I10-008</td>
<td>Annexe F</td>
</tr>
</tbody>
</table>

C. 16.6. ACIER POUR OUVRAGES MÉTALLIQUES

C. 16.7. BOULONS

C. 17. ADJUVANTS POUR BETONS, MORTIER ET COULIS

Les essais sont ceux prévus par les normes produits citées au C. 17 et par le document de référence QUALIROUTES-C-11/C-17

C. 18. PRODUIT DE CURE
<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacité contre l'évaporation</td>
<td>PTV 501, annexe 2</td>
<td></td>
</tr>
<tr>
<td>Temps de séchage</td>
<td>CME 12.02</td>
<td></td>
</tr>
<tr>
<td>Teneur en solvant</td>
<td>CME 12.03</td>
<td></td>
</tr>
<tr>
<td>Extrait sec</td>
<td>NBN EN ISO 3251</td>
<td>autre méthode: à convenir</td>
</tr>
<tr>
<td>Spectre infrarouge</td>
<td>NBN EN 1767 + PTV 501, annexe 3</td>
<td>autre méthode: à convenir</td>
</tr>
<tr>
<td>Taux de cendres</td>
<td>NBN EN ISO 3451-1 + PTV 501, annexe 3</td>
<td>autre méthode: à convenir</td>
</tr>
<tr>
<td>Viscosité</td>
<td>NBN EN ISO 3219</td>
<td>autre méthode: à convenir</td>
</tr>
<tr>
<td>Masse volumique</td>
<td>NBN EN ISO 2811-1 ou NBN EN ISO 2811-2</td>
<td>autre méthode: à convenir</td>
</tr>
<tr>
<td>Détermination de l’équivalent époxy (composant A)</td>
<td>NBN EN 1877-1</td>
<td>Dans le cas de résines réactives de type époxy à l’eau</td>
</tr>
<tr>
<td>Détermination de l’équivalent amines (composant B)</td>
<td>NBN EN 1877-2</td>
<td>Dans le cas de résines réactives de type époxy à l’eau</td>
</tr>
</tbody>
</table>

C. 19. FOND DE JOINT

Méthodes d'essais à convenir

C. 20. VERNIS D'ADHERENCE

Méthodes d'essais à convenir

C. 21.1. PRODUIT DE SCELLEMENT COULÉ À CHAUD (NBN EN 14188-1)

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse volumique</td>
<td>NBN EN 13880-1</td>
</tr>
<tr>
<td>Pénétration au cône</td>
<td>NBN EN 13880-2</td>
</tr>
<tr>
<td>Pénétrabilité et retour élastique</td>
<td>NBN EN 13880-3</td>
</tr>
<tr>
<td>Point de ramollissement Anneau et Bille</td>
<td>NBN EN 1427</td>
</tr>
<tr>
<td>Résistance au fluage</td>
<td>NBN EN 13880-5</td>
</tr>
<tr>
<td>Cohésion/adhesion</td>
<td>NBN EN 13880-10</td>
</tr>
</tbody>
</table>

C. 21.2. PRODUIT DE SCELLEMENT COULÉ À FROID (NBN EN 14188-2)

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrudabilité (1 composant)</td>
<td>NBN EN 12694</td>
</tr>
<tr>
<td>Extrudabilité (2 composants)</td>
<td>NBN EN 23048</td>
</tr>
<tr>
<td>Temps de durcissement</td>
<td>NBN EN 14187-2</td>
</tr>
<tr>
<td>Propriété d'autonivellement</td>
<td>NBN EN 14187-3</td>
</tr>
<tr>
<td>Résistance au coulage</td>
<td>NBN EN ISO 7390</td>
</tr>
</tbody>
</table>

C. 21.3. BANDE BITUMINEUSE PRÉFORMÉE POUR JOINT

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point de ramollissement anneau et bille</td>
<td>NBN EN 1427</td>
</tr>
<tr>
<td>Pénétration au cône</td>
<td>NBN EN 13880-2</td>
</tr>
<tr>
<td>Pénétrabilité et retour élastique</td>
<td>NBN EN 13880-3</td>
</tr>
<tr>
<td>Essai de pliage</td>
<td>CME 13.06</td>
</tr>
<tr>
<td>Caractéristiques mesurées ou nom de l’essai</td>
<td>Référence du mode opératoire</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Elasticité et adhésivité</td>
<td>NBN EN 13880-13</td>
</tr>
</tbody>
</table>

C. 21.5. PRODUIT D'ANCRAGE

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Essai d’arrachement</td>
<td>NBN EN 1881</td>
<td>après 50 cycles de chocs thermiques selon NBN EN 13687-1</td>
</tr>
<tr>
<td>Teneur en chlorures</td>
<td>NBN EN 1015-17</td>
<td></td>
</tr>
<tr>
<td>Température de transition vitreuse</td>
<td>NBN EN 12614</td>
<td></td>
</tr>
<tr>
<td>Fluage sous contrainte de traction</td>
<td>NBN EN 1544</td>
<td></td>
</tr>
</tbody>
</table>

C. 21.6. RESINE D’INJECTION

Les essais sont ceux prévus par la norme NBN EN 1504-5 et le cahier spécial des charges.

C. 21.7. COLLE POUR ELEMENTS LINÉAIRES

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Essai d’arrachement</td>
<td>Méthode à convenir</td>
<td></td>
</tr>
<tr>
<td>Résistance à la compression</td>
<td>Méthode à convenir</td>
<td></td>
</tr>
<tr>
<td>Résistance à la flexion</td>
<td>Méthode à convenir</td>
<td></td>
</tr>
<tr>
<td>Test d’insensibilité à l’eau, aux hydrocarbures et aux huiles</td>
<td>Méthode à convenir</td>
<td></td>
</tr>
<tr>
<td>Test d’insensibilité au gel</td>
<td>Méthode à convenir</td>
<td></td>
</tr>
<tr>
<td>Vérification du retrait ou de l’expansion lors du durcissement</td>
<td>Méthode à convenir</td>
<td></td>
</tr>
</tbody>
</table>

C. 22. FOURRURE DE JOINTS DE DILATATION

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Epaisseur</td>
<td>Méthode à convenir</td>
<td></td>
</tr>
</tbody>
</table>

C. 23. IMPREGNATION HYDROFOBE

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Profondeur de pénétration</td>
<td>NBN EN 13579</td>
<td></td>
</tr>
<tr>
<td>Taux de dessiccation</td>
<td>NBN EN 13579</td>
<td></td>
</tr>
<tr>
<td>Absorption d’eau</td>
<td>NBN EN 13580</td>
<td></td>
</tr>
<tr>
<td>Résistance aux alcalis</td>
<td>NBN EN 13580</td>
<td></td>
</tr>
<tr>
<td>Perte de masse après cycles de gel-dégel en présence de sels de déverglaçage</td>
<td>NBN EN 13581</td>
<td></td>
</tr>
</tbody>
</table>

C. 24. MEMBRANE PLASTIQUE

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse surfacique</td>
<td>CME 10.01</td>
<td></td>
</tr>
<tr>
<td>Epaisseur</td>
<td>Méthode à convenir</td>
<td></td>
</tr>
</tbody>
</table>
C. 25. GEOTEXTILES

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la traction</td>
<td>NBN EN ISO 10319</td>
<td></td>
</tr>
<tr>
<td>Allongement à la rupture</td>
<td>NBN EN ISO 10319</td>
<td></td>
</tr>
<tr>
<td>Résistance à la perforation statique</td>
<td>NBN EN ISO 12236</td>
<td></td>
</tr>
<tr>
<td>Résistance à la perforation dynamique</td>
<td>NBN EN ISO 13433</td>
<td></td>
</tr>
<tr>
<td>Dimensions des pores</td>
<td>NBN EN ISO 12956</td>
<td></td>
</tr>
<tr>
<td>Perméabilité à l’eau</td>
<td>NBN EN ISO 11058</td>
<td></td>
</tr>
<tr>
<td>Perméabilité à l’eau dans le plan</td>
<td>NBN EN ISO 12958-1</td>
<td></td>
</tr>
<tr>
<td>Protection d’une barrière d’étanchéité</td>
<td>NBN EN 13719</td>
<td></td>
</tr>
<tr>
<td>Durabilité (méthode à choisir selon l’application du géotextile)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- construction de routes et autres zones de circulation (à l'exclusion des voies ferrées et des couches de roulement)</td>
<td>NBN EN 13249, annexe B</td>
<td></td>
</tr>
<tr>
<td>- travaux de terrassement, fondations et structures de soutènement</td>
<td>NBN EN 13251, annexe B</td>
<td></td>
</tr>
<tr>
<td>- l'utilisation dans les systèmes de drainage</td>
<td>NBN EN 13252, annexe B</td>
<td></td>
</tr>
<tr>
<td>- ouvrages de lutte contre l'erosion</td>
<td>NBN EN 13253, annexe B</td>
<td></td>
</tr>
<tr>
<td>- tunnels et de structures souterraines</td>
<td>NBN EN 13256, annexe B</td>
<td></td>
</tr>
</tbody>
</table>

C. 26. GÉOCOMPOSITE DRAINANT

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacité de débit dans le plan</td>
<td>NBN EN 1897</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 12958-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 12958-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>En m²/s et réduite à 10° C, pour le gradient hydraulique et la contrainte verticale long terme correspondant au projet pour des contraintes de 20 kPa, 50, 100 kPa ou 200 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>En m²/s (sous gradient 1) et une contrainte égale ou supérieure correspondant au projet pour des contraintes de 20 kPa, 50, 100 kPa ou 200 kPa</td>
<td></td>
</tr>
<tr>
<td>Epaisseur résiduelle long terme</td>
<td>NBN EN 1897</td>
<td>Sous 20 kPa et une contrainte correspondant au projet</td>
</tr>
</tbody>
</table>

C. 26.2.1. FILTRE

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la traction</td>
<td>NBN EN ISO 10319 et</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 10321</td>
<td></td>
</tr>
<tr>
<td>Résistance à la perforation</td>
<td>NBN EN 918</td>
<td></td>
</tr>
<tr>
<td>CBR (Californian Bearing Ratio)</td>
<td>NBN EN ISO 12236</td>
<td></td>
</tr>
<tr>
<td>Ouverture de filtration</td>
<td>NBN EN ISO 12956</td>
<td></td>
</tr>
<tr>
<td>Caractéristiques mesurées ou nom de l'essai</td>
<td>Référence du mode opératoire</td>
<td>Commentaires et ajouts</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Comportement au fluage en compression + cisaillement</td>
<td>NBN EN 1897</td>
<td></td>
</tr>
<tr>
<td>Capacité de débit dans le plan</td>
<td>NBN EN ISO 12958-1</td>
<td>En fonction du fluage en compression sur le long terme</td>
</tr>
</tbody>
</table>

C. 26.2.3. GÉOESPACEUR

C. 27. GEOGRILLE

C. 27.1. GEOGRILLES SYNTHÉTIQUE POUR REVÊTEMENTS BITUMINEUX

<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l'essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la traction et déformation à la rupture</td>
<td>NBN EN ISO 10319</td>
<td></td>
</tr>
<tr>
<td>Stabilité chimique et biologique (insectes, micro-organismes)</td>
<td>Méthode à convenir</td>
<td></td>
</tr>
<tr>
<td>Stabilité physique (température, rayonnement UV)</td>
<td>Méthode à convenir</td>
<td></td>
</tr>
<tr>
<td>Température Vicat de ramollissement</td>
<td>NBN EN ISO 306</td>
<td></td>
</tr>
<tr>
<td>Absorption de bitume</td>
<td>NBN EN 15381</td>
<td></td>
</tr>
</tbody>
</table>

C. 27.2. GRILLAGES D'ARMATURES MÉTALLIQUES POUR REVÊTEMENTS BITUMINEUX

<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l'essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge de rupture</td>
<td>NBN EN 10002-1</td>
<td></td>
</tr>
<tr>
<td>Diamètre du fil</td>
<td>Méthode à convenir</td>
<td></td>
</tr>
<tr>
<td>Galvanisation</td>
<td>NBN EN ISO 1460</td>
<td></td>
</tr>
<tr>
<td>Proportion des trous</td>
<td>Méthode à convenir</td>
<td></td>
</tr>
</tbody>
</table>

C. 27.3. GEOGRILLES DE RENFORCEMENT DE SOL

<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l'essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la traction à la rupture</td>
<td>NBN EN ISO 10319</td>
<td></td>
</tr>
<tr>
<td>Résistance à la traction à 2% de déformation</td>
<td>NBN EN ISO 10319</td>
<td></td>
</tr>
<tr>
<td>Allongement à la rupture</td>
<td>NBN EN ISO 10319</td>
<td></td>
</tr>
<tr>
<td>Dimensions de l'ouverture de maille</td>
<td>mesurer</td>
<td></td>
</tr>
<tr>
<td>Durabilité</td>
<td>NBN EN 13249, annexe B</td>
<td></td>
</tr>
<tr>
<td>– routes et autres zones de circulation (à l'exclusion des voies ferrées et des couches de roulement)</td>
<td>NBN EN 13251, annexe B</td>
<td></td>
</tr>
<tr>
<td>– travaux de terrassement, fondations et structures de soutènement</td>
<td>NBN EN 13251, annexe B</td>
<td></td>
</tr>
<tr>
<td>– systèmes de drainage</td>
<td>NBN EN13252, annexe B</td>
<td></td>
</tr>
<tr>
<td>– ouvrages de lutte contre l'érosion (protection côtière et revêtement de berge)</td>
<td>NBN EN 13253, annexe B</td>
<td></td>
</tr>
<tr>
<td>– construction de tunnels et de structures souterraines</td>
<td>NBN EN 13256, annexe B</td>
<td></td>
</tr>
</tbody>
</table>
C. 28. PIERRE NATURELLE

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dénomination de la pierre</td>
<td>NBN EN 12440</td>
<td></td>
</tr>
<tr>
<td>Nature lithologique</td>
<td>NBN EN 12670</td>
<td></td>
</tr>
<tr>
<td>Classification des roches</td>
<td>PTV 819-4</td>
<td></td>
</tr>
<tr>
<td>Dalles de pierre naturelle pour pavage extérieur</td>
<td>PTV 819-1</td>
<td></td>
</tr>
<tr>
<td>Pavés de pierre naturelle pour pavage extérieur</td>
<td>PTV 819-2</td>
<td></td>
</tr>
<tr>
<td>Bordures de pierre naturelle pour pavage extérieur</td>
<td>PTV 819-3</td>
<td></td>
</tr>
<tr>
<td>Analyse pétrographique</td>
<td>NBN EN 12407</td>
<td></td>
</tr>
<tr>
<td>Résistance à la compression</td>
<td>NBN EN 1926</td>
<td></td>
</tr>
<tr>
<td>Résistance à la flexion</td>
<td>NBN EN 12372</td>
<td></td>
</tr>
<tr>
<td>Absorption d’eau (porosité)</td>
<td>NBN EN 13755</td>
<td></td>
</tr>
<tr>
<td>Masse volumique et porosité</td>
<td>NBN EN 1936</td>
<td></td>
</tr>
<tr>
<td>Résistance à l’usure</td>
<td>NBN EN 14157</td>
<td>Essai d’usure au disque large (Capon)</td>
</tr>
<tr>
<td>Résistance gel-dégel</td>
<td>NBN EN 12371</td>
<td>Essai technologique (56 cycles)</td>
</tr>
<tr>
<td>Résistance au glissement</td>
<td>NBN EN 14231</td>
<td></td>
</tr>
<tr>
<td>Coefficient de polissage accéléré</td>
<td>NBN EN 1097-8</td>
<td>De la roche-mère à partir de laquelle les éléments sont fabriqués</td>
</tr>
<tr>
<td>Paramètres de structure et d’aspect</td>
<td>NIT 220</td>
<td></td>
</tr>
<tr>
<td>Prescriptions techniques pour les roches carbonatées</td>
<td>NIT 228</td>
<td></td>
</tr>
<tr>
<td>Echantillons contractuels et réception</td>
<td>PTV 819-5</td>
<td></td>
</tr>
</tbody>
</table>

C. 29.3 C.29.4 C 29.5 PAVÉS EN PIERRE NATURELLE (VOIRIE CIRCULEE, BALISAGE, ZONES PIETONNES ET CYCLABLES)

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caractéristiques géométriques</td>
<td>CME 21.01</td>
<td></td>
</tr>
<tr>
<td>Absorption d’eau (porosité)</td>
<td>NBN EN 13755</td>
<td>Compression perpendiculaire à la stratification</td>
</tr>
<tr>
<td>Résistance en compression</td>
<td>NBN EN 1926</td>
<td></td>
</tr>
<tr>
<td>Résistance gel-dégel</td>
<td>NBN EN 12371</td>
<td>Essai technologique (56 cycles)</td>
</tr>
<tr>
<td>Résistance à l’usure</td>
<td>NBN EN 14157</td>
<td>Méthode Capon</td>
</tr>
<tr>
<td>Résistance au glissement</td>
<td>NBN EN 14231</td>
<td>Ne s’applique pas si les pavés sont surfacés en relief ou clivés</td>
</tr>
<tr>
<td>Coefficient de polissage accéléré (PSV) de la roche mère</td>
<td>NBN EN 1097-8</td>
<td>Uniquement en voirie circulée et sous conditions pour le balisage</td>
</tr>
</tbody>
</table>

Q. 21
Caractéristiques mesurées ou nom de l’essai

<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l’essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse pétrographique</td>
<td>NBN EN 12407</td>
<td>Humidification avant découpage de la lame (dans la zone restant humide). Cas particulier des roches sédimentaires: lame perpendiculaire à la stratification. Description de tout élément pouvant mettre en péril la durabilité de la pierre.</td>
</tr>
</tbody>
</table>

Caractéristique non spécifiée

<table>
<thead>
<tr>
<th>Caractéristique non spécifiée</th>
<th>Pavés de pierre naturelle pour le pavage extérieur – Exigences et méthodes d’essais</th>
<th>NBN EN 1342</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavés de pierre naturelle pour pavage extérieur</td>
<td></td>
<td>PTV 819-2</td>
</tr>
</tbody>
</table>

C. 29.6. Briques de pavage en terre cuite

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Méthode à convenir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caractéristiques géométriques</td>
<td></td>
</tr>
<tr>
<td>Charge de rupture transversale</td>
<td>NBN EN 1344, annexe D</td>
</tr>
<tr>
<td>Résistance à l’abrasion</td>
<td>NBN EN 1344, annexe E</td>
</tr>
<tr>
<td>Absorption d’eau</td>
<td>NBN EN 771-1, annexe C</td>
</tr>
<tr>
<td>Résistance au gel</td>
<td>NBN EN 1344, annexe C</td>
</tr>
<tr>
<td>Résistance au glissement</td>
<td>NBN EN 1344, annexe F</td>
</tr>
</tbody>
</table>

C. 29.7. / C. 29.8. Pavés en béton de ciment (incl. pavés pour revêtements de sol permeables à l’eau)

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Méthode à convenir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>NBN EN 1338, annexe C</td>
</tr>
<tr>
<td>Absorption d’eau</td>
<td>NBN EN 1338, annexe E</td>
</tr>
<tr>
<td>Résistance au gel-dégel en présence de sels de déverglacage</td>
<td>NBN EN 1338, annexe D</td>
</tr>
<tr>
<td>Résistance au fendage</td>
<td>NBN EN 1338, annexe F</td>
</tr>
<tr>
<td>Usure - Abrasion</td>
<td>NBN EN 1338, annexe G</td>
</tr>
<tr>
<td>Ouvertures de drainage et joint élargis</td>
<td>PTV 126 § 8.2 Pavages drainants</td>
</tr>
<tr>
<td>Perméabilité</td>
<td>PTV 126 § 8.3 Pavages drainants</td>
</tr>
</tbody>
</table>

Caractéristiques non spécifiées

<table>
<thead>
<tr>
<th>Caractéristiques non spécifiées</th>
<th>Méthode à convenir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glissance</td>
<td>NBN EN 1338, annexe I</td>
</tr>
<tr>
<td>Ouvertures de drainage</td>
<td>PTV 122 § 8.2 Pavages drainants</td>
</tr>
</tbody>
</table>

1 Un examen pétrographique, réalisé conformément à la procédure spécifiée dans la NBN EN 12407, donne une indication sur la présence d’éléments à faible résistance mécanique et/ou hautement absorbants qui peuvent être dégradés par l’action du gel-dégel. Parmi ceux-ci, on peut citer orientation préférentielle de minéraux (délitement), minéraux connus pour leur grande altérabilité, etc.
C. 30.1. CARREAUX EN BÉTON

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>NBN EN 1339, annexe C</td>
<td></td>
</tr>
<tr>
<td>Absorption d'eau</td>
<td>NBN EN 1339, annexe E</td>
<td></td>
</tr>
<tr>
<td>Résistance au gel-dégel en présence de sels de déverglaçage</td>
<td>NBN EN 1339, annexe D</td>
<td></td>
</tr>
<tr>
<td>Résistance à la flexion et charge de rupture</td>
<td>NBN EN 1339, annexe F</td>
<td></td>
</tr>
<tr>
<td>Usure - Abrasion</td>
<td>NBN EN 1339, annexe G</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caractéristiques non spécifiées</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glissance</td>
<td>NBN EN 1339, annexe I</td>
<td></td>
</tr>
</tbody>
</table>

C. 30.2. DALLES EN PIERRE NATURELLE

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caractéristiques géométriques</td>
<td>CME 21.01</td>
<td></td>
</tr>
<tr>
<td>Absorption d'eau</td>
<td>NBN EN 13755</td>
<td></td>
</tr>
<tr>
<td>Résistance à la flexion</td>
<td>NBN EN 12372</td>
<td>Essai technologique (56 cycles)</td>
</tr>
<tr>
<td>Résistance gel-dégel</td>
<td>NBN EN 12371</td>
<td>Méthode Capon</td>
</tr>
<tr>
<td>Résistance à l'usure</td>
<td>NBN EN 14157</td>
<td>Ne s'applique pas si les dalles sont surfacées en relief ou clivées</td>
</tr>
<tr>
<td>Résistance au glissement</td>
<td>NBN EN 14231</td>
<td></td>
</tr>
<tr>
<td>Coefficient de polissage accéléré (PSV) de la roche mère</td>
<td>NBN EN 1097-8</td>
<td>Uniquement en voirie circulée et sous conditions pour le balisage</td>
</tr>
</tbody>
</table>

| Analyse pétrographique | NBN EN 12407 | Humidification avant découpage de la lame (dans la zone restant humide). Cas particulier des roches sédimentaires: lame perpendiculaire à la stratification. Description de tout élément pouvant mettre en péril la durabilité de la pierre² |

<table>
<thead>
<tr>
<th>Caractéristique non spécifiée</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalles de pierre naturelle pour le pavage extérieur – Exigences et méthodes d’essais</td>
<td>NBN EN 1341</td>
<td></td>
</tr>
<tr>
<td>Dalles de pierre naturelle pour pavage extérieur</td>
<td>PTV 819-1</td>
<td></td>
</tr>
</tbody>
</table>

C. 30.3. DALLES DE BÉTON GAZON

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance</td>
<td>PTV 126 Annexe B</td>
<td></td>
</tr>
</tbody>
</table>

² Un examen pétrographique, réalisé conformément à la procédure spécifiée dans la NBN EN 12407, donne une indication sur la présence d’éléments à faible résistance mécanique et/ou hautement absorbants qui peuvent être dégradés par l’action du gel-dégel. Parmi ceux-ci, on peut citer orientation préférentielle de minéraux (délitement), minéraux connus pour leur grande altérabilité, etc.
C. 30.4. DALLES DE REPÉRAGE

Tous les essais repris en C. 30.1 (Béton) ou C. 30.2 (Pierre naturelle)

Dimensions des reliefs Méthode à convenir
Adhésion des produits appliqués à froid ou à chaud NBN EN 14231

C. 31.1. BORDURE EN PIERRE NATURELLE

Caractéristiques spécifiées

<table>
<thead>
<tr>
<th>Caractéristiques géométriques</th>
<th>Méthode à convenir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature lithologique</td>
<td>NBN EN 12670</td>
</tr>
<tr>
<td>Analyse pétrographique</td>
<td>NBN EN 12407</td>
</tr>
<tr>
<td>Résistance à la flexion</td>
<td>NBN EN 12372</td>
</tr>
<tr>
<td>Résistance à l'usure</td>
<td>NBN EN 14157</td>
</tr>
<tr>
<td>Résistance gel-dégel</td>
<td>NBN EN 12371</td>
</tr>
<tr>
<td>Chocs thermiques</td>
<td>NBN EN 14066</td>
</tr>
<tr>
<td>Résistance au glissement</td>
<td>NBN EN 14231</td>
</tr>
<tr>
<td>Absorption d'eau (porosité)</td>
<td>NBN EN 13755</td>
</tr>
<tr>
<td>Vieillissement accéléré avec le SO₂ en présence d'humidité</td>
<td>NBN EN 13919</td>
</tr>
<tr>
<td>Caractéristique non spécifiée</td>
<td></td>
</tr>
<tr>
<td>Coefficient de polissage accéléré (PSV) de la roche mère</td>
<td>NBN EN 1097-8</td>
</tr>
</tbody>
</table>

C. 31.1. / C. 32. / C. 33. / C. 34. ELEMENTS PRÉFABRIQUÉS EN BÉTON: BORDURES, BANDES DE CONTREBUTAGE, FILETS D'EAU, BORDURES-FIILETS D'EAU, DÉLIMITEURS DE TRAFIC, BORDURES DE DÉMARQUAGE

Caractéristiques spécifiées

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>NBN EN 1340, annexe C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption d'eau</td>
<td>NBN EN 1340, annexe E</td>
</tr>
<tr>
<td>Résistance au gel-dégel en présence de sels de déglaçage</td>
<td>NBN EN 1340, annexe D</td>
</tr>
<tr>
<td>Résistance à la flexion et charge de rupture</td>
<td>NBN EN 1340, annexe F</td>
</tr>
<tr>
<td>Usure - Abrasion</td>
<td>NBN EN 1340, annexe G</td>
</tr>
<tr>
<td>Glissage</td>
<td>NBN EN 1340, annexe I</td>
</tr>
<tr>
<td>Blancheur du béton blanc</td>
<td>NBN EN 1436</td>
</tr>
</tbody>
</table>

C. 35. CANIVEAUX PRÉFABRIQUÉS
<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caractéristiques spécifiées</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorption d’eau</td>
<td>NBN EN 1433</td>
<td></td>
</tr>
<tr>
<td>Caractéristiques géométriques</td>
<td>NBN EN 1433</td>
<td></td>
</tr>
<tr>
<td>Résistance à la compression ou à la flexion</td>
<td>NBN EN 1433</td>
<td></td>
</tr>
</tbody>
</table>

C. 36. DISPOSITIFS DE RETENUE EN ACIER, MIXTES ACIER-BOIS ET LISSES DE SÉCURITÉ POUR MOTOCYCLISTES

C. 36.1. DISPOSITIFS DE RETENUE EN ACIER

Les dispositifs de retenue en acier sont conformes aux normes NBN EN 1317-1, NBN EN 1317-2, NBN ENV 1317-4 et NBN EN 1317-5 et au PTV 869.

C. 36.2. DISPOSITIFS DE RETENUE EN ACIER-BOIS

Les dispositifs de retenue en acier-bois sont conformes aux normes NBN EN 1317-1, NBN EN 1317-2, NBN ENV 1317-4 et NBN EN 1317-5 et au PTV 869.

C. 36.3. LISSE DE SÉCURITÉ POUR MOTOCYCLISTES

Les lisses de sécurité pour motocyclistes sont conformes au PTV 869.

C. 37. ATTENUATEURS DE CHOC FIXES

Les atténuateurs de choc fixes sont conformes aux normes NBN EN 1317-1, NBN EN 1317-3 et NBN EN 1317-5.

Conformité du produit fini au prototype testé

- qualité de l’acier

- géométrie et dimensions

- protection contre la corrosion

NBN EN ISO 1461

C. 38.1. TUYAUX ÉTANCHES NON SOUMIS À PRESSION INTERNE

C. 38.1.2. TUYAUX EN BÉTON

C. 38.1.2.1. TUYAUX CIRCULAIRES ET OVOÏDES EN BÉTON

Les modalités de réception technique préalable sont décrites dans l’annexe Q de la norme NBN B 21-106.

C. 38.1.3. TUYAUX EN GRÈS

Les tuyaux et accessoires en grès et assemblages de tuyaux sont conformes aux normes de la série NBN EN 295.

Tuyaux en grès pour les réseaux de branchement et d’assainissement.

Tolérances dimensionnelles

Diamètre intérieur minimal

Longueur nominale

Q. 25
## CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI	RÉFÉRENCE DU MODE OPÉRATOIRE	COMMENTAIRES ET AJOUTS
Equerrage des extrémités | NBN EN 295-3 §2 | |
Flèche | NBN EN 295-3 §3 | |

Résistance

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à l’écrasement</td>
<td>NBN EN 295-3 §4</td>
</tr>
</tbody>
</table>

Etanchéité aux liquides

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanchéité à l’eau</td>
<td>NBN EN 295-3 §9</td>
</tr>
</tbody>
</table>

Assemblages de tuyaux en grès pour les réseaux de branchement et d’assainissement.

Tolerances dimensionnelles

Interchangeabilité des joints:
- d_4 (système d’assemblage C)
- d_3 (système d’assemblage F)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanchéité à l’eau</td>
<td>NBN EN 295-3 §18</td>
</tr>
<tr>
<td>– système C</td>
<td></td>
</tr>
<tr>
<td>– système F</td>
<td></td>
</tr>
</tbody>
</table>

Accessoires en grès pour les réseaux de branchement et d’assainissement.

Tolerances dimensionnelles

- Courbure des coudes
- Angle de branchement des raccordements

Etanchéité aux liquides et aux gaz

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanchéité à l’eau</td>
<td>NBN EN 295-3 §9</td>
</tr>
<tr>
<td>Etanchéité à l’air</td>
<td>NBN EN 295-3 §13</td>
</tr>
</tbody>
</table>

Tuyaux de fonçage en grès pour les réseaux de branchement et d’assainissement.

Tolerances dimensionnelles

- Diamètre intérieur minimal
- Longueur nominale
- Equerrage des extrémités | NBN EN 295-3 §2 | |
- Flèche | NBN EN 295-3 §3 | |

Résistance

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à l’écrasement</td>
<td>NBN EN 295-3 §4</td>
</tr>
</tbody>
</table>

Etanchéité aux liquides

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanchéité à l’eau</td>
<td>NBN EN 295-3 §9</td>
</tr>
</tbody>
</table>

C. 38.1.4. TUYAUX EN MATÉRIAUX SYNTHÉTIQUES

C. 38.1.4.1. TUYAUX ET RACCORDS EN PVC NON PLASTIFIÉ (PVC-U)

<table>
<thead>
<tr>
<th>Tuyaux</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneur en PVC</td>
<td>NBN EN 1905</td>
</tr>
<tr>
<td>Aspect</td>
<td>NBN EN 1401</td>
</tr>
<tr>
<td>Dimensions</td>
<td>NBN EN 1401</td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Vicat température de ramollissement</td>
<td>NBN EN ISO 2507-1</td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 2507-2</td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 2507-3</td>
</tr>
<tr>
<td>Résistance au dichlorométhane</td>
<td>NBN EN 580</td>
</tr>
<tr>
<td>Résistance aux chocs</td>
<td>NBN EN ISO 3127</td>
</tr>
<tr>
<td>Rigidité annulaire</td>
<td>NBN EN ISO 9969</td>
</tr>
<tr>
<td>Détermination du retrait longitudinal à chaud</td>
<td>NBN EN ISO 2505</td>
</tr>
<tr>
<td>Essai de pression interne</td>
<td>NBN EN 921</td>
</tr>
<tr>
<td>Marquage</td>
<td>NBN EN 1401</td>
</tr>
<tr>
<td>Densité</td>
<td>NBN EN ISO 1183-1</td>
</tr>
<tr>
<td>Couleur</td>
<td>PTV 1005</td>
</tr>
<tr>
<td>Dimensions profondeur insertion manchon: Amin</td>
<td>PTV 1005</td>
</tr>
<tr>
<td>Tuyaux</td>
<td></td>
</tr>
<tr>
<td>Teneur en PVC</td>
<td>NBN EN 1905</td>
</tr>
<tr>
<td>Dimensions</td>
<td>NBN EN 1401</td>
</tr>
<tr>
<td>- diamètre intérieur bout mâle et emboiture</td>
<td></td>
</tr>
<tr>
<td>- épaisseur paroi bout mâle/ emboiture/corps</td>
<td></td>
</tr>
<tr>
<td>Vicat température de ramollissement</td>
<td>NBN EN ISO 2507-1</td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 2507-2</td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 2507-3</td>
</tr>
<tr>
<td>Essai à l’étuve</td>
<td>NBN EN ISO 580</td>
</tr>
<tr>
<td>Résistance aux chocs</td>
<td>NBN EN ISO 13263</td>
</tr>
<tr>
<td>Résistance mécanique</td>
<td>NBN EN ISO 13264</td>
</tr>
<tr>
<td>Etanchéité à l’eau</td>
<td>NBN EN ISO 13254</td>
</tr>
<tr>
<td>Pression interne</td>
<td>NBN EN 921</td>
</tr>
<tr>
<td>Marquage</td>
<td>NBN EN 1401</td>
</tr>
<tr>
<td>Dimensions</td>
<td>PTV 1005</td>
</tr>
<tr>
<td>Profondeur insertion manchon: Amin</td>
<td>PTV 1005</td>
</tr>
<tr>
<td>Aspect / couleur</td>
<td>PTV 1005</td>
</tr>
<tr>
<td>Aptitude à l’emploi</td>
<td></td>
</tr>
<tr>
<td>Essai d’étanchéités combinées</td>
<td>NBN EN 1277</td>
</tr>
</tbody>
</table>

C. 38.1.4.2. TUYAUX ET RACCORDS EN PEHD

<table>
<thead>
<tr>
<th>Tuyaux</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Indice de fluidité à chaud en masse (Melt Flow Rate) MFR</td>
<td>NBN EN ISO 1133-1</td>
<td></td>
</tr>
<tr>
<td>Essai de pression hydraulique interne</td>
<td>NBN EN ISO 1133-2</td>
<td></td>
</tr>
<tr>
<td>Essai de pression hydraulique interne</td>
<td>NBN EN 921</td>
<td></td>
</tr>
<tr>
<td>Essai de pression hydraulique interne</td>
<td>NBN EN 921</td>
<td></td>
</tr>
<tr>
<td>Stabilité thermique OIT</td>
<td>NBN EN 728</td>
<td></td>
</tr>
<tr>
<td>Aspect/Coloris</td>
<td>NBN EN 12666-1+A1</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>NBN EN 12666-1+A1</td>
<td></td>
</tr>
<tr>
<td>Rigidité annulaire</td>
<td>NBN EN ISO 9969</td>
<td></td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
<td>COMMENTAIRES ET AJOUTS</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Retrait à chaud</td>
<td>NBN EN ISO 2505</td>
<td></td>
</tr>
<tr>
<td>Marquage</td>
<td>NBN EN 12666-1+A1</td>
<td></td>
</tr>
</tbody>
</table>

Composants

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Référence</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFR</td>
<td>NBN EN ISO 1133-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 1133-2</td>
<td></td>
</tr>
<tr>
<td>Essai de pression hydraulique interne</td>
<td>NBN EN 921</td>
<td></td>
</tr>
<tr>
<td>Essai de pression hydraulique interne</td>
<td>NBN EN 921</td>
<td></td>
</tr>
<tr>
<td>Stabilité thermique OIT</td>
<td>NBN EN 728</td>
<td></td>
</tr>
<tr>
<td>Aspect/Coloris</td>
<td>NBN EN 12666-1+A1</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>NBN EN 12666-1+A1</td>
<td></td>
</tr>
<tr>
<td>Déformabilité ou résistance mécanique</td>
<td>NBN EN ISO 13264</td>
<td></td>
</tr>
<tr>
<td>Essais de chute</td>
<td>NBN EN ISO 13263</td>
<td></td>
</tr>
<tr>
<td>Essai à l’étuve (110° C)</td>
<td>NBN EN ISO 580</td>
<td></td>
</tr>
<tr>
<td>Marquage</td>
<td>NBN EN 12666-1+A1</td>
<td></td>
</tr>
<tr>
<td>Crush test ou Peel test (pour les raccords électrosoudables)</td>
<td>ISO 13955 et ISO 13954</td>
<td></td>
</tr>
<tr>
<td>Essai de pression interne pour raccords électrosoudables et soudés bout à bout</td>
<td>ISO 1167</td>
<td></td>
</tr>
<tr>
<td>Essais de traction pour soudage bout à bout (tuyau-tuyau, tuyau-raccord avec bout mâle)</td>
<td>ISO 13953</td>
<td></td>
</tr>
<tr>
<td>Aptitude à l’emploi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essais d’étanchéité à bague d’étanchéité en élastomère</td>
<td>NBN EN 1277</td>
<td></td>
</tr>
<tr>
<td>Essai cyclique à température élevée</td>
<td>NBN EN ISO 13257</td>
<td></td>
</tr>
<tr>
<td>Méthode d’essai pour la performance à long terme des assemblages avec bague d’étanchéité en TPE</td>
<td>NBN EN ISO 13254</td>
<td></td>
</tr>
</tbody>
</table>

C. 38.1.4.3. TUYAUX ET RACCORDS EN PP

Tuyaux

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>NBN EN 1852</td>
</tr>
<tr>
<td>Aspect/Couleur</td>
<td>NBN EN 1852</td>
</tr>
<tr>
<td>MFR</td>
<td>NBN EN ISO 1133-1</td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 1133-2</td>
</tr>
<tr>
<td>Stabilité thermique OIT</td>
<td>NBN EN 728</td>
</tr>
<tr>
<td>Résistance aux chocs (méthode du cadran)</td>
<td>NBN EN ISO 3127</td>
</tr>
<tr>
<td>Résistance aux chocs (méthode en escalier)</td>
<td>NBN EN 1411</td>
</tr>
<tr>
<td>Retrait longitudinal à chaud</td>
<td>NBN EN ISO 2505</td>
</tr>
<tr>
<td>Rigidité annulaire initiale</td>
<td>NBN EN ISO 9969</td>
</tr>
<tr>
<td>Essai de pression interne (1000h)</td>
<td>NBN EN 921</td>
</tr>
<tr>
<td>Essai de pression interne (140h)</td>
<td>NBN EN 921</td>
</tr>
<tr>
<td>Marquage</td>
<td>NBN EN 1852</td>
</tr>
</tbody>
</table>
Raccords

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect/Couleur</td>
<td>NBN EN 1852</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>NBN EN ISO 3126</td>
<td></td>
</tr>
<tr>
<td>Stabilité thermique OIT</td>
<td>NBN EN 728</td>
<td></td>
</tr>
<tr>
<td>MFR</td>
<td>NBN EN ISO 1133-1</td>
<td></td>
</tr>
<tr>
<td>Déformabilité ou résistance mécanique</td>
<td>NBN EN ISO 13264</td>
<td></td>
</tr>
<tr>
<td>Essai de pression interne (1000h)</td>
<td>ISO 1167</td>
<td></td>
</tr>
<tr>
<td>Essai à l’étuve (150° C)</td>
<td>NBN EN ISO 580</td>
<td></td>
</tr>
<tr>
<td>Résistance aux chocs</td>
<td>NBN EN ISO 13263</td>
<td></td>
</tr>
<tr>
<td>Marquage</td>
<td>NBN EN 1852</td>
<td></td>
</tr>
</tbody>
</table>

Aptitude à l’emploi

<table>
<thead>
<tr>
<th>Essais d’étanchéité des assemblages à bague d’étanchéité en élastomère</th>
<th>NBN EN 1277</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essai cyclique à température élevée (11)</td>
<td>NBN EN ISO 13257</td>
</tr>
<tr>
<td>Essais à long terme pour joints TPE</td>
<td>NBN EN 1989</td>
</tr>
</tbody>
</table>

Compound - Caractéristiques de la matière de la paroi intérieure et extérieure des tuyaux et raccords moulés par injection

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la pression interne</td>
<td>NBN EN 921</td>
<td></td>
</tr>
<tr>
<td>MFR</td>
<td>NBN EN ISO 1133-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 1133-2</td>
<td></td>
</tr>
<tr>
<td>Résistance à la pression interne</td>
<td>NBN EN 921</td>
<td></td>
</tr>
<tr>
<td>Stabilité thermique</td>
<td>NBN EN 728</td>
<td></td>
</tr>
</tbody>
</table>

Tuyaux

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect/Couleur</td>
<td>PTV 1003</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>PTV 1003</td>
<td></td>
</tr>
<tr>
<td>Longueur du tuyau</td>
<td>PTV 1003</td>
<td></td>
</tr>
<tr>
<td>Dimensions des raccords</td>
<td>PTV 1003</td>
<td></td>
</tr>
<tr>
<td>Essai à l’étuve</td>
<td>ISO 12091</td>
<td></td>
</tr>
<tr>
<td>MFR</td>
<td>NBN EN ISO 1133-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 1133-2</td>
<td></td>
</tr>
<tr>
<td>Stabilité thermique</td>
<td>NBN EN 728</td>
<td></td>
</tr>
<tr>
<td>Rigidité annulaire</td>
<td>NBN EN ISO 9969</td>
<td></td>
</tr>
<tr>
<td>Flexibilité annulaire</td>
<td>NBN EN 1446</td>
<td></td>
</tr>
<tr>
<td>Résistance au choc</td>
<td>NBN EN ISO 3127</td>
<td></td>
</tr>
<tr>
<td>Résistance au choc (Méthode en escalier)</td>
<td>NBN EN 1411</td>
<td></td>
</tr>
<tr>
<td>Taux de fluage</td>
<td>NBN EN ISO 9967</td>
<td></td>
</tr>
<tr>
<td>Pression interne</td>
<td>NBN EN 921</td>
<td></td>
</tr>
<tr>
<td>Pression interne</td>
<td>NBN EN 921</td>
<td></td>
</tr>
<tr>
<td>Marquage</td>
<td>PTV 1003</td>
<td></td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
<td>COMMENTAIRES ET AJOUTS</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Raccords</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspect/coloris</td>
<td>PTV 1003</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>PTV 1003</td>
<td></td>
</tr>
<tr>
<td>Essai à l’étuve</td>
<td>NBN EN ISO 580</td>
<td></td>
</tr>
<tr>
<td>Rigidité</td>
<td>ISO 13967</td>
<td></td>
</tr>
<tr>
<td>Résistance au choc</td>
<td>NBN EN ISO 13263</td>
<td></td>
</tr>
<tr>
<td>Déformabilité ou résistance mécanique</td>
<td>NBN EN ISO 13264</td>
<td></td>
</tr>
<tr>
<td>Stabilité thermique OIT</td>
<td>NBN EN 728</td>
<td></td>
</tr>
<tr>
<td>Marquage</td>
<td>PTV 1003</td>
<td></td>
</tr>
<tr>
<td>Aptitude à l’emploi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essai d’étanchéité des assemblages à bague d’étanchéité en élastomère</td>
<td>NBN EN 1277</td>
<td></td>
</tr>
<tr>
<td>Essais à long terme pour bagues d’étanchéité en TPE</td>
<td>NBN EN 1989</td>
<td></td>
</tr>
<tr>
<td>Résistance en traction de la ligne de soudure</td>
<td>NBN EN ISO 13262</td>
<td></td>
</tr>
<tr>
<td>Essai de l’étanchéité à l’eau</td>
<td>NBN EN ISO 13254</td>
<td></td>
</tr>
<tr>
<td>Résistance à un cycle de températures et de charge externe combinés</td>
<td>NBN EN 1437</td>
<td></td>
</tr>
<tr>
<td>Essai de résistance à des cycles de température élevée</td>
<td>NBN EN ISO 13257</td>
<td></td>
</tr>
</tbody>
</table>

C. 38.1.5. TUYAUX EN FONTE DUCTILE

<table>
<thead>
<tr>
<th>Propriétés générales</th>
<th>visuel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspects de surface et réparations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types d’assemblages et interconnexion</td>
<td>visuel</td>
<td></td>
</tr>
<tr>
<td>Couleur d’identification</td>
<td>visuel</td>
<td></td>
</tr>
<tr>
<td>Tolérances dimensionnelles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epaisseur de paroi</td>
<td>NBN EN 598</td>
<td></td>
</tr>
<tr>
<td>Diamètre extérieur</td>
<td>NBN EN 598</td>
<td></td>
</tr>
<tr>
<td>Diamètre intérieur</td>
<td>NBN EN 598</td>
<td></td>
</tr>
<tr>
<td>Longueur</td>
<td>NBN EN 598</td>
<td></td>
</tr>
<tr>
<td>Rectitude des tuyaux</td>
<td>NBN EN 598</td>
<td></td>
</tr>
<tr>
<td>Caractéristiques du matériau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propriétés en traction</td>
<td>NBN EN 598</td>
<td></td>
</tr>
<tr>
<td>Dureté</td>
<td>NBN EN 598</td>
<td></td>
</tr>
<tr>
<td>Revêtements des tuyaux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revêtement extérieur de zinc</td>
<td>NBN EN 598</td>
<td></td>
</tr>
<tr>
<td>Revêtement intérieur de mortier de ciment alumineux</td>
<td>NBN EN 598</td>
<td></td>
</tr>
<tr>
<td>Revêtement des zones d’assemblage</td>
<td>NBN EN 598</td>
<td></td>
</tr>
</tbody>
</table>

Revêtements des raccords et accessoires
C. 38.2. TUYAUX ÉTANCHES SOUMIS À PRESSION INTERNE

C. 38.2.2. TUYAUX EN BÉTON

Les tuyaux d'égouttage en béton sont conformes aux normes harmonisées NBN EN 641 (tuyaux armés à âme en tôle) et NBN EN 642 (tuyaux précontraints).

C. 38.2.3. TUYAUX EN FONTE DUCTILE

Voir les essais pour C. 38.1.5 à l'exception de:
– revêtement époxy des raccords et accessoires

C. 38.2.4. TUYAUX EN ACIER

Voir les essais pour C. 38.1.6

C. 38.2.5. TUYAUX EN MATÉRIAUX SYNTHÉTIQUES

C. 38.2.5.1. TUYAUX ET RACCORDS EN PVC NON PLASTIFIÉE (PVC-U)

<table>
<thead>
<tr>
<th>Tuyaux</th>
<th></th>
</tr>
</thead>
</table>
| Valeur MRS et matière | NBN EN ISO 9080
 | NBN EN 921
<pre><code> | NBN EN ISO 12162 |
</code></pre>
<p>| Aspect/Coloris | NBN EN 1452-2 |
| Dimensions | NBN EN ISO 3126 |
| Résistance aux chocs | NBN EN ISO 3127 |
| Essai de pression hydraulique interne 20 °C | NBN EN 921 |
| Essai de pression hydraulique interne 60 °C | NBN EN 921 |</p>
<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l’essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essais de pression hydraulique pour tous les types d’emboîtures de tuyaux intégrées 20 °C</td>
<td>NBN EN 921</td>
<td></td>
</tr>
<tr>
<td>Retrait à chaud</td>
<td>NBN EN ISO 2505</td>
<td></td>
</tr>
<tr>
<td>Température de ramollissement Vicat</td>
<td>NBN EN ISO 2507-1, NBN EN ISO 2507-2, NBN EN ISO 2507-3</td>
<td></td>
</tr>
<tr>
<td>Degré de gélation</td>
<td>NBN EN 580</td>
<td></td>
</tr>
<tr>
<td>Marquage</td>
<td>NBN EN 1452-2</td>
<td></td>
</tr>
<tr>
<td>Chanfreins</td>
<td>PTV 1001</td>
<td></td>
</tr>
<tr>
<td>Dimensions: ovalisation</td>
<td>NBN EN ISO 3126</td>
<td></td>
</tr>
<tr>
<td>Masse Volumique</td>
<td>NBN EN ISO 1183 (parties 1, 2 et 3)</td>
<td></td>
</tr>
<tr>
<td>Caractéristique de la matière: détermination de valeur K</td>
<td>NBN EN 922</td>
<td></td>
</tr>
</tbody>
</table>

Coudes formés à partir de Tuyaux

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>NBN EN 1452-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension du bout mâle</td>
<td>NBN EN ISO 3126</td>
</tr>
</tbody>
</table>

Composants

<table>
<thead>
<tr>
<th>Aspect/Coloris</th>
<th>NBN EN 1452-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>NBN EN ISO 3126</td>
</tr>
<tr>
<td>Valeur MRS et matière</td>
<td>NBN EN ISO 9080, NBN EN 921, NBN EN ISO 12162</td>
</tr>
<tr>
<td>Dimensions des collets et des brides</td>
<td>ISO 9624</td>
</tr>
<tr>
<td>Essai d’écrasement (crushing test)</td>
<td>NBN EN 802</td>
</tr>
<tr>
<td>Essai de pression hydraulique interne à 20 °C</td>
<td>ISO 12092</td>
</tr>
<tr>
<td>Température de ramollissement Vicat</td>
<td>NBN EN ISO 2507-1, NBN EN ISO 2507-2, NBN EN ISO 2507-3</td>
</tr>
<tr>
<td>Essai à l’étuve</td>
<td>NBN EN ISO 580</td>
</tr>
<tr>
<td>Marquage</td>
<td>NBN EN 1452-3</td>
</tr>
<tr>
<td>Caractéristique de la matière: détermination de valeur K</td>
<td>NBN EN 922</td>
</tr>
<tr>
<td>Dimensions des collets et des brides</td>
<td>ISO 9624</td>
</tr>
<tr>
<td>Dimension</td>
<td>NBN EN ISO 3126</td>
</tr>
</tbody>
</table>

Robinets et accessoires

<table>
<thead>
<tr>
<th>Valeur MRS et matière</th>
<th>NBN EN ISO 9080, NBN EN 921, NBN EN ISO 12162</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect/Coloris</td>
<td>NBN EN 1452</td>
</tr>
<tr>
<td>Dimension</td>
<td>NBN EN 1452</td>
</tr>
<tr>
<td>Essai de pression hydraulique interne 20 °C (tester avec tige)</td>
<td>NBN EN 917 méthode A avec ISO/DIS 12092: 1994</td>
</tr>
<tr>
<td>Essai de pression hydraulique interne 20 °C - 1000h</td>
<td>NBN EN 917 méthode A avec ISO/DIS 12092: 1994</td>
</tr>
<tr>
<td>Essai d’écrasement (crushing test)</td>
<td>NBN EN 802</td>
</tr>
<tr>
<td>Propriétés d’endurance</td>
<td>NBN EN ISO 8659</td>
</tr>
<tr>
<td>Couple de manœuvre</td>
<td>NBN EN 28233</td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Essai des sièges et des garnitures</td>
<td>NBN EN 917, méthode B</td>
</tr>
<tr>
<td>Température de ramollissement Vicat</td>
<td>NBN EN ISO 2507-1</td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 2507-2</td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 2507-3</td>
</tr>
<tr>
<td>Essai à l’étuve</td>
<td>NBN EN 921</td>
</tr>
<tr>
<td>Marquage</td>
<td>NBN EN 1452</td>
</tr>
<tr>
<td>Caractéristique de la matière: détermination de valeur K</td>
<td>NBN EN 922</td>
</tr>
<tr>
<td>Dimensions des collets et des brides</td>
<td>ISO 9624</td>
</tr>
</tbody>
</table>

Doubles manchons PVC-U fabriqués de tuyaux

Aspect/Coloris	NBN EN 1452	
Essai de pression hydraulique interne 20 °C	NBN EN 921	
Essai de pression hydraulique interne 20 °C	ISO 12092	
Marquage	NBN EN 1452	
Température de ramollissement Vicat	NBN EN ISO 2507-1	
	NBN EN ISO 2507-2	
	NBN EN ISO 2507-3	
Degré de gélification	NBN EN 580	
Caractéristique de la matière: détermination de valeur K	PTV 1001	
Dimensions des manchons en PVC-U	NBN T42-603	
Dimensions des bagues d’étanchéité	NBN T42-603	

Aptitude à l’emploi

Essai de pression hydraulique à court terme pour l’étanchéité des assemblages	NBN EN ISO 13845	
Essai de pression hydraulique négative à court terme pour l’étanchéité des ensembles	NBN EN ISO 13844	
Essai de pression hydraulique à long terme pour l’étanchéité des assemblages 20 °C – 1000 h. - 1,7xPN	NBN EN ISO 13846	
Essai de pression hydraulique sur brides 20 °C – 1000 h. – 1,7 x PN	NBN EN ISO 13846	
Essai de pression hydraulique sur système de collage 40 °C - 1,3 X pn – 1000 h.	NBN EN ISO 13846	
Essai de pression hydraulique interne 60 °C – 1000 h -12,5 MPa	NBN EN ISO 1167 ou NBN EN 921	
Essai d’étanchéité et de la résistance en traction, avec sollicitation en flexion et pression	NBN EN ISO 13783	
Essai de pression hydraulique pour la détermination du coefficient de sécurité C	PTV 1001	
C. 38.2.5.2. TUYAUX EN PVC NON PLASTIFIÉE ORIENTÉ (PVC-O)

C. 38.2.5.3. TUYAUX ET RACCORDS EN POLYÉTHYLÈNE (PE)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densité du polymère de base</td>
<td>NBN EN ISO 1183</td>
</tr>
<tr>
<td>Teneur en noir de carbone</td>
<td>ISO 6964</td>
</tr>
<tr>
<td>Dispersion du noir de carbone</td>
<td>ISO 18553</td>
</tr>
<tr>
<td>Stabilité thermique</td>
<td>NBN EN 728</td>
</tr>
<tr>
<td>Teneur en matières volatiles</td>
<td>NBN EN 12099</td>
</tr>
<tr>
<td>Teneur en eau</td>
<td>NBN EN 12118</td>
</tr>
<tr>
<td>MFR</td>
<td>NBN EN ISO 1133-1</td>
</tr>
<tr>
<td>Classification</td>
<td>NBN EN ISO 12162</td>
</tr>
<tr>
<td>Slow Crack growth (Notch-test)</td>
<td>NBN EN ISO 13479</td>
</tr>
<tr>
<td>Résistance à la RCP < 1 MPa</td>
<td>NBN EN ISO 13478</td>
</tr>
<tr>
<td>Compatibilité au soudage</td>
<td>ISO 13953</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tuyaux</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect/Couleur</td>
<td>Série NBN EN 12201</td>
</tr>
<tr>
<td>Dimensions</td>
<td>NBN EN ISO 3126</td>
</tr>
<tr>
<td>Essai de pression interne 80 °C 165h</td>
<td>NBN EN 921</td>
</tr>
<tr>
<td>Essai de pression interne 20 °C 100h</td>
<td>NBN EN 921</td>
</tr>
<tr>
<td>Essai de pression interne 80 °C 1000h</td>
<td>NBN EN 921</td>
</tr>
<tr>
<td>Stabilité thermique</td>
<td>NBN EN 580</td>
</tr>
<tr>
<td>MFR</td>
<td>NBN EN ISO 1133-1</td>
</tr>
<tr>
<td>Marquage</td>
<td>Série NBN EN 12201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aptitude à l'emploi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Essais de traction sur pièces prélevées dans des assemblages par soudage bout à bout</td>
<td>ISO 13953</td>
</tr>
<tr>
<td>Essai de pression interne 80 °C</td>
<td>NBN EN 921</td>
</tr>
</tbody>
</table>

C. 39. ANNEAUX, JOINTS ET BAGUES D'ÉTANCHÉITÉ

Les essais sont ceux prévus par la norme NBN EN 681-1, NBN EN 681-2, NBN EN 681-3 et NBN EN 681-4.

C. 40. TUYAUX DRAINANTS ET MATÉRIAUX FILTRANTS

C. 40.1. TUYAUX DRAINANTS

Les essais sont ceux prévus par les normes et spécifications types citées au C. 40.1.
C. 40.2. MATÉRIAUX FILTRANTS

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Méthode à convenir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epaisseur</td>
<td></td>
</tr>
<tr>
<td>Masse surfacique</td>
<td></td>
</tr>
<tr>
<td>Résistance à la traction</td>
<td></td>
</tr>
</tbody>
</table>

C. 41. FONTE ET ACIER MOULU

La fonte et l’acier moulé répondent aux prescriptions de la série NBN EN 124.
Les avaloirs et trappillons sont certifiés conformes à la série NBN EN 124 par un organisme de certification.

C. 41.1. AVALOIRS

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>NBN EN 124 (Parties 1 à 6) et PTV 802</th>
<th>charge d’épreuve 400 kN (250 kN pour les dispositifs prévus en zone piétonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essai de chargement de la grille et du châssis</td>
<td>NBN EN 124 (Parties 1 à 6) et PTV 802</td>
<td>charge d’épreuve 400 kN (250 kN pour les dispositifs prévus en zone piétonne)</td>
</tr>
<tr>
<td>Etanchéité</td>
<td>PTV 802</td>
<td></td>
</tr>
</tbody>
</table>

C. 41.2. TRAPPILLONS

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>NBN EN 10002-1</th>
<th>éprouvettes pour essais de traction coulées aux pièces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualité de la fonte</td>
<td>NBN EN 10002-1</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Résistance à la traction</td>
<td>NBN EN 10002-1</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Allongement</td>
<td>NBN EN 10002-1</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Nodularité</td>
<td>NBN EN 10002-1</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Qualité de l’acier</td>
<td>Analyse selon NBN EN 10002-1</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Béton – cadre</td>
<td>NBN B 21-101</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Béton – Résistance à la compression</td>
<td>NBN B 21-101</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Dimensions</td>
<td>mesurer</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Orifice d’aération des tampons (+dimensions)</td>
<td>mesurer</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Cote de passage</td>
<td>mesurer</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Profondeur d’emboîtement</td>
<td>mesurer</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Assise – support élastique – dimensions – dureté, résistance à la traction, allongement à la rupture, déformation rémanente (70 °C), vieillissement (70 °C)</td>
<td>mesurer</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Protection des arrêtes et des surfaces de contact</td>
<td>mesurer</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Assurance du tampon/grille dans le cadre</td>
<td>peser</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Positionnement des tampons et des grilles</td>
<td>mesurer</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Etat de surface</td>
<td>mesurer</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
<tr>
<td>Hauteur du cadre</td>
<td>mesurer</td>
<td>éprouvettes pour essais de traction coulées aux pièces</td>
</tr>
</tbody>
</table>
CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI | **RÉFÉRENCE DU MODE OPÉRATOIRE** | **COMMENTAIRES ET AJOUTS**
---|---|---
Force de contrôle – flèche résiduelle | NBN EN 124 (Parties 1 à 6) |
Marquage | contrôle visuel |
Résistance à la glissance | NBN EN 13036-4 |

C. 42. REGARDS DE VISITE ET BOÎTES DE BRANCHEMENT EN BÉTON NON ARMÉ, BÉTON FIBRE ACIER ET BÉTON ARMÉ

<table>
<thead>
<tr>
<th>Essai</th>
<th>Référence</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à l’écraissement</td>
<td>NBN EN 1917, annexe A ou B</td>
<td></td>
</tr>
<tr>
<td>Étanchéité à l’eau</td>
<td>NBN EN 1917, annexe C + NBN B 21-101</td>
<td></td>
</tr>
<tr>
<td>Absorption d’eau</td>
<td>NBN EN 1917, annexe D</td>
<td></td>
</tr>
<tr>
<td>Résistance d’échelons scellés</td>
<td>NBN EN 1917, annexe E</td>
<td></td>
</tr>
</tbody>
</table>

C. 43. ECHELLES ET ECHELONS

Les essais sont ceux prévus par les normes citées au C. 43.

C. 44. ELEMENTS PRÉFABRIQUÉS EN BÉTON ARMÉ

Les essais sont ceux prévus par les normes produits citées au tableau C. 44.0 et par le document de référence QUALIROUTES-C-2.

| Absorption d’eau | NBN B15-215 |

C. 45. BRIQUES ET BLOCS DE MAÇONNERIE

C. 45.2. BRIQUES EN TERRE CUITÉ

Les essais sont ceux prévus par la norme NBN EN 771-1 et dans PTV 23-002 et PTV 23-003

C. 45.3. BLOCS EN BÉTON

Les essais sont ceux prévus par les normes NBN EN 771-3, NBN EN 771-4

C. 45.4. BLOCS DE LAITIER BASIQUE DE HAUT-FOURNEAU

Les essais sont ceux prévus par les normes NBN EN 771-2

C. 46. PRODUITS POUR SYSTEME D’ÉTANCHÉITÉ

C. 46.1. SYSTÈME D’ÉTANCHÉITÉ

Système d'étanchéité à base de feuille bitumineuse armée	Guide d'agrément UBAtc G0001
Système d’étanchéité à base de résine	Guide d'agrément UBAtc G0003
Système d’étanchéité à base d’asphalte coulé:	
– masse surfacique nominale	NBN EN 1849-1
– charge à la rupture	NBN EN 12311-1

Q. 36
CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. 46.1.1. SYSTÈME D'ÉTANCHÉITÉ À BASE DE FEUILLE BITUMINEUSE ARMÉE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epaisseur</td>
<td>NBN EN 1849-1</td>
<td></td>
</tr>
<tr>
<td>Masse surfacique:</td>
<td>NBN EN 1849-1</td>
<td></td>
</tr>
<tr>
<td>- Feuilles sans granulats d'autoprotection</td>
<td>NBN EN 1849-1</td>
<td></td>
</tr>
<tr>
<td>- Feuilles avec granulats d'autoprotection</td>
<td>NBN EN 1849-1</td>
<td></td>
</tr>
<tr>
<td>Résistance en traction</td>
<td>NBN EN 12311-1</td>
<td></td>
</tr>
<tr>
<td>Allongement à la force maximale</td>
<td>NBN EN 12311-1</td>
<td></td>
</tr>
<tr>
<td>- Armature en non tissé</td>
<td>NBN EN 12311-1</td>
<td></td>
</tr>
<tr>
<td>- Armature en non tissé minéral</td>
<td>NBN EN 1849-1</td>
<td></td>
</tr>
<tr>
<td>Défaut d'aspect</td>
<td>NBN EN 1849-1</td>
<td></td>
</tr>
<tr>
<td>Epaisseur</td>
<td>NBN EN 1849-1</td>
<td>sur la lisière de recouvrement dépourvue de granulats</td>
</tr>
<tr>
<td>Longueur, largeur</td>
<td>NBN EN 1849-1</td>
<td></td>
</tr>
<tr>
<td>Écart de rectitude</td>
<td>NBN EN 1849-1</td>
<td></td>
</tr>
<tr>
<td>Absorption d'eau</td>
<td>NBN EN 14223</td>
<td></td>
</tr>
<tr>
<td>Souplesse à basse température</td>
<td>NBN EN 1109</td>
<td>bitume élastomère</td>
</tr>
<tr>
<td>Résistance au fluage à température élevée</td>
<td>NBN EN 1110</td>
<td>bitume plastomère</td>
</tr>
<tr>
<td>Stabilité dimensionnelle</td>
<td>NBN EN 1107-1 NBN EN 14695 Annexe B</td>
<td>Lorsque la couche de protection est en asphalte coulé.</td>
</tr>
<tr>
<td>Étanchéité à l'eau</td>
<td>NBN EN 14694</td>
<td>sans traitement</td>
</tr>
<tr>
<td>Souplesse à basse température après réaction au vieillissement thermique</td>
<td>NBN EN 1296 (12 semaines) et NBN EN 1109</td>
<td>bitume élastomère</td>
</tr>
<tr>
<td>Résistance au fluage à température élevée après réaction au vieillissement thermique</td>
<td>NBN EN 1296 (12 semaines) et NBN EN 1110</td>
<td>bitume plastomère</td>
</tr>
<tr>
<td>Adhérence support - système d'étanchéité</td>
<td>NBN EN 13596</td>
<td>éprouvettes type 1</td>
</tr>
<tr>
<td>Résistance au compactage d'une couche d'enrobé bitumineux</td>
<td>NBN EN 14692</td>
<td></td>
</tr>
<tr>
<td>Comportement lors de l'application de l'asphalte coulé</td>
<td>NBN EN 14693</td>
<td>Lorsque la couche de protection est en asphalte coulé</td>
</tr>
<tr>
<td>Adhérence support - système d'étanchéité - couche de protection</td>
<td>NBN EN 13596</td>
<td></td>
</tr>
<tr>
<td>Résistance au cisaillement</td>
<td>NBN EN 13653</td>
<td></td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
<td>COMMENTAIRES ET AJOUTS</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Compatibilité par vieillissement thermique</td>
<td>NBN EN 14691</td>
<td>- Lorsque la couche de protection est en asphalt coulé.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lorsque la couche de protection est en béton bitumineux.</td>
</tr>
<tr>
<td>Aptitude au pontage des fissures</td>
<td>NBN EN 14224 (-10°C)</td>
<td>- éprouvette type 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- L’essai avec couche de protection en asphalt coulé valide l’essai avec couche de protection en enrobé bitumineux</td>
</tr>
</tbody>
</table>

C. 46.1.2. SYSTÈME D’ÉTANCHÉITÉ À BASE DE RÉSINE

Essais suivant guide d’agrément UBAtc n° G0003 "Système de résines liquides utilisées comme étanchéité des ponts et voitures parking"

C. 46.1.3. SYSTÈME D’ÉTANCHÉITÉ À BASE D’ASPHALTE COULÉ

<table>
<thead>
<tr>
<th>Voile de verre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse surfacique nominale</td>
</tr>
<tr>
<td>Charge à la rupture longitudinale</td>
</tr>
<tr>
<td>Charge à la rupture transversale</td>
</tr>
<tr>
<td>Résistance à l’indentation</td>
</tr>
</tbody>
</table>

- Préparation des échantillons:
 - fabrication de plaques d'essais d'une épaisseur de 30±5 mm dans des moules et sur une feuille de fibres de verre.
 - prélèvement de 3 échantillons prismatiques ou cylindrique avec une surface de 100 cm²

<table>
<thead>
<tr>
<th>Retrait contrarié</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 58.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Résistance à l'orniérage</th>
<th>NBN EN 12697-22 CME 58.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulométrie</td>
<td>NBN EN 12697-2+A1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teneur en liant</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBN EN 12697-1 méthode B.2 ou méthode C (pour autocontrôle, après démonstration de l'équivalence)</td>
</tr>
</tbody>
</table>

Méthode B.2: préparation de l'échantillon:
remuage constant du mélange solvant-asphalte coulé (sous reflux)
solvant:
- trichloréthylène, dichlorométhane pour l'essai sans récupération
- trichloréthylène, toluène ou xylène si le liant doit être récupéré

C. 46.2. SYSTÈME D'ÉGALISATION DU SUPPORT

C. 46.2.1. TIRE-GRATTE EPOXY

<table>
<thead>
<tr>
<th>Matière non volatile de la résine</th>
<th>NBN EN ISO 3251</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délai maximum d'utilisation</td>
<td>NBN EN ISO 9514</td>
</tr>
</tbody>
</table>

C. 46.2.2. MASSE D'ÉGALISATION BITUMINEUSE
<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essais suivant guide d’agrément UBAtc n° G0030 "Masse d’égalisation bitumineuses pour la correction de texture des tabliers de pont"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. 47. APPUI S D’OUVRAGE D’ART

C. 48. JOINTS DE DILATATION POUR OUVRAGES D’ART

C. 49. GARDE-CORPS MÉTALLIQUES

C. 50. REPÈRES TOPOGRAPHIQUES

C. 51. PEINTURES

Les essais sont ceux prévus par le fascicule X "Protection des matériaux ferreux contre la corrosion" et par le document de référence Qualiroutes-J-2 "Marchés publics pour entreprises de travaux, fournitures et services - utilisation des peintures à performance"

C. 51.2. REVÊTEMENT DE PROTECTION DU BÉTON

<table>
<thead>
<tr>
<th>Adhérence</th>
<th>NBN EN 1542</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption capillaire et perméabilité à l'eau</td>
<td>NBN EN 1062-3</td>
</tr>
<tr>
<td>Perméabilité au CO₂</td>
<td>NBN EN 1062-6</td>
</tr>
<tr>
<td>Résistance à la fissuration</td>
<td>NBN EN 1062-7</td>
</tr>
</tbody>
</table>

Durabilité:
- adhérence après compatibilité thermique avec influence de sels de déverglaçage
 | NBN EN 13687-1 (50x) |
 | NBN EN 13687-2 (10x) |
- durabilité vieillissement artificiel (rayonnement UV et humidité)
 | NBN EN 1062-11 |

Compatibilité
- PTV 562

Perméabilité à la vapeur d'eau
- NBN EN ISO 7783

C. 51.3. REVÊTEMENT D’IMPERMÉABILISATION OU D’ÉTANCHÉITÉ DU BÉTON

Spécifications des revêtements d’imperméabilisation ou d’étanchéité du béton selon PTV 562

Identification (revêtements à base de liants organiques)

| Masse volumique à 25 °C | NBN EN ISO 2811 |
| Extrait sec | NBN EN ISO 3251 |
| 1 g, 105 °C |
| Teneur en cendres | NBN EN ISO 3451-1 |
| 600 °C - 30 min - 1 g |
Teneur en liant	NBN EN 12697-1
Temps de séchage	NBN EN ISO 9117-3
Teneur en TiO₂	NBN EN 12802
Spectre infrarouge du liant	NBN EN 1767

Identification (revêtements à base de liants hydrauliques)

Composant liquide

| Masse volumique à 25 °C | NBN EN 480-7 |
| Teneur en sec | NBN EN 480-8 |
C. 52. LES MATÉRIAUX DE MARQUAGE

C. 52.2.1. PRODUITS DE MARQUAGE

C. 52.2.1.1. PEINTURES

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Préparation des éprouvettes</td>
<td></td>
<td>Les résultats des essais de performance et de durabilité sont fixés par la moyenne arithmétique effectuée sur 3 éprouvettes différentes</td>
</tr>
<tr>
<td>Exigences des performances (essais préliminaires à la stabilité thermique)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordonnées trichromatiques x, y et facteur de luminance b</td>
<td>NBN EN 1871</td>
<td>support de classe I et II</td>
</tr>
<tr>
<td>Rugosité</td>
<td>NBN EN 1436</td>
<td>support de classe I</td>
</tr>
<tr>
<td>Temps de séchage</td>
<td>ASTM 711-89</td>
<td>support de classe I</td>
</tr>
<tr>
<td>Exigences de durabilité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résistance au rayonnement ultraviolet</td>
<td>NBN EN ISO 4892-3</td>
<td>(sur support de classe I) Essai réalisé durant 168 h. – lampe de type II, cycles d'exposition au rayonnement UV à (60 ±2) °C pendant 8 h et cycles de condensation à (50+2)°C pendant 4 h.</td>
</tr>
<tr>
<td>Résistance aux cycles gel-dégel avec immersion dans des sels de dégivrage</td>
<td>NBN EN 13687-1</td>
<td>Les éprouvettes sont soumises à 20 cycles (support de classe II)</td>
</tr>
<tr>
<td>Résistance aux alcalis</td>
<td>NBN EN 1871</td>
<td></td>
</tr>
<tr>
<td>Exigences de composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teneur en matière sèche</td>
<td>NBN EN 12802</td>
<td></td>
</tr>
<tr>
<td>Teneur en TiO₂ (produits blancs)</td>
<td>NBN EN 12802</td>
<td></td>
</tr>
<tr>
<td>Teneur en microbilles (peintures A1)</td>
<td>NBN EN 12802</td>
<td></td>
</tr>
<tr>
<td>Teneur en solvant(s) aromatique(s)</td>
<td>UBAtc G0023</td>
<td></td>
</tr>
<tr>
<td>Consistance</td>
<td>ASTM D 562</td>
<td>à 25 °C</td>
</tr>
<tr>
<td>Teneur en liant</td>
<td>NBN EN 12802</td>
<td></td>
</tr>
<tr>
<td>Masse volumique</td>
<td>NBN EN ISO 2811-1</td>
<td>à 25 °C</td>
</tr>
<tr>
<td>Teneur en pigments et matières inorganiques (charges)</td>
<td></td>
<td>La teneur en pigment et matière inorganiques est calculée à partir de la teneur en matière sèche et de la teneur en liant.</td>
</tr>
<tr>
<td>Identification du liant</td>
<td>NBN EN 12802</td>
<td></td>
</tr>
<tr>
<td>Identification des pigments et des matières organiques</td>
<td>NBN EN 12802</td>
<td></td>
</tr>
<tr>
<td>Caractéristiques non spécifiées</td>
<td>Référence du mode opératoire</td>
<td>Commentaires et ajouts</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Mesure à l’adhérence de la peinture au support.</td>
<td>NBN EN 24620</td>
<td></td>
</tr>
<tr>
<td>Résistance à l’abrasion</td>
<td>NBN EN ISO 7784-2</td>
<td></td>
</tr>
</tbody>
</table>

C. 52.2.1.2. ENDUI TS À CHAUD

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Préparation des éprouvettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exigences de performances (essais préliminaires à la stabilité thermique)</td>
<td></td>
</tr>
<tr>
<td>Coordonnées trichromatiques x, y et facteur de luminance</td>
<td>NBN EN 1871 (sur support de classe I.)</td>
</tr>
<tr>
<td>Point de ramollissement</td>
<td>NBN EN 1871</td>
</tr>
<tr>
<td>Résistance aux alcalis</td>
<td>NBN EN 1871</td>
</tr>
<tr>
<td>Choc à froid</td>
<td>NBN EN 1871</td>
</tr>
<tr>
<td>Rugosité</td>
<td>NBN EN 1436 (sur support de classe I)</td>
</tr>
<tr>
<td>Coordonnées trichromatiques x, y après essais de stabilité thermique</td>
<td>NBN EN 1871</td>
</tr>
<tr>
<td>Point de ramollissement après essais de stabilité thermique</td>
<td>NBN EN 1871</td>
</tr>
<tr>
<td>Pénétration après essais de stabilité thermique</td>
<td>NBN EN 1871</td>
</tr>
<tr>
<td>Variation du facteur de luminance (\beta) après vieillissement au rayonnement ultraviolet</td>
<td>NBN EN ISO 4892-3</td>
</tr>
</tbody>
</table>

| Exigences de durabilité | Résistance aux cycles de gel-dégel avec immersion dans des sels de déverglaçage | NBN EN 13687-1 |

<table>
<thead>
<tr>
<th>Exigences de composition</th>
<th>Teneur en dioxyde de titane</th>
<th>NBN EN 12802</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneur en microbilles</td>
<td>NBN EN 12802</td>
<td></td>
</tr>
<tr>
<td>Teneur en liant</td>
<td>NBN EN 12802</td>
<td></td>
</tr>
<tr>
<td>Masse volumique</td>
<td>NBN EN ISO 2811-1</td>
<td></td>
</tr>
<tr>
<td>Teneur en pigment et matières inorganiques</td>
<td>Calcul: 100 % - teneur en liant</td>
<td></td>
</tr>
<tr>
<td>Identification du liant</td>
<td>NBN EN 12802</td>
<td></td>
</tr>
<tr>
<td>Identification des pigments et des matières inorganiques</td>
<td>NBN EN 12802</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identification du primer</th>
<th>Masse volumique</th>
<th>NBN EN ISO 2811-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrait sec</td>
<td>NBN EN ISO 3251</td>
<td></td>
</tr>
<tr>
<td>Identification</td>
<td>NBN EN 12802</td>
<td></td>
</tr>
</tbody>
</table>
C. 52.2.1.3. ENDUITS À FROID

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Préparation des éprouvettes</td>
<td>UBAtc G0028</td>
<td></td>
</tr>
</tbody>
</table>

Caractéristiques spécifiées

<table>
<thead>
<tr>
<th>Exigences de performances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordonnées trichromatiques x, y et facteur de luminance</td>
</tr>
<tr>
<td>Stabilité au stockage</td>
</tr>
<tr>
<td>Rugosité</td>
</tr>
<tr>
<td>Finesse de broyage</td>
</tr>
<tr>
<td>Résistance aux cycles gel-dégel avec immersion dans des sels de déverglaçage</td>
</tr>
<tr>
<td>Support de classe II</td>
</tr>
<tr>
<td>Adhérence</td>
</tr>
<tr>
<td>Support de classe II</td>
</tr>
<tr>
<td>Variation du facteur de luminance β aprèsvieillissement au rayonnement ultraviolet (après stabilité thermique)</td>
</tr>
</tbody>
</table>

Essais de composition

Essais sur l’enduit à froid mélangé et polymérisé

| Teneur en Ti₂O₂ | NBN EN 12802 |
| Teneur en liant | NBN EN 12802 |

Essais d'identification

Masse volumique | NBN EN ISO 2811-2 à 25 °C |
Teneur en liant	NBN EN 12802
Identification du liant	NBN EN 12802
Teneur en pigments et en matières inorganiques	Calcul: 100 % - teneur en liant
Identification des pigments et en matières inorganiques	NBN EN 12802
Teneur en dioxyde de titane	NBN EN 12802
Teneur en microbilles de verre	NBN EN 12802

Primer d’accrochage

Masse volumique | NBN EN ISO 2811-1 (pour les produits liquides) NBN EN ISO 2811-2 (pour les produits solides) à 25 °C |
| Extrait sec | NBN EN ISO 3251 1° à 105 °C |
| Identification du liant | NBN EN 12802 |

Contenu des conditionnements | Le contenu des récipients est déterminé par pesée et mesure de la masse volumique |

C. 52.2.1.4. PRODUITS PRÉFABRIQUÉS (PRÉFORMÉS)

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordonnées chromatiques x, y</td>
</tr>
<tr>
<td>Facteur de luminance β</td>
</tr>
<tr>
<td>Coefficient de luminance Qₜ</td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Rétroréflexion Rl.</td>
</tr>
<tr>
<td>Rugosité</td>
</tr>
<tr>
<td>Durabilité:</td>
</tr>
<tr>
<td>en laboratoire ou sur route</td>
</tr>
<tr>
<td>Epaisseur et dimensions</td>
</tr>
<tr>
<td>Teneur en matières inorganiques</td>
</tr>
<tr>
<td>Analyse thermogravimétrique</td>
</tr>
<tr>
<td>Identification du résidu</td>
</tr>
<tr>
<td>Identification de la colle et/ou du primer</td>
</tr>
<tr>
<td>Masse volumique à 25 °C</td>
</tr>
<tr>
<td>Extrait sec</td>
</tr>
<tr>
<td>Identification du liant</td>
</tr>
</tbody>
</table>

C. 52.2.1.5. PLOTS RÉTRORÉFLECHISSANTS

NBN EN 1463/A1 - plots rétroréfléchissants est d’application

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient d’intensité lumineuse</td>
</tr>
<tr>
<td>Coordonnées trichromatiques du rayonnement rétroréfléchi</td>
</tr>
<tr>
<td>Coordonnées trichromatiques et facteur de luminance</td>
</tr>
</tbody>
</table>

C. 52.2.2. MICROBILLES DE VERRE

C. 52.2.2.1. MICROBILLES DE VERRE DE PREMELANGE

NBN EN 1423 - Produits de marquage routier - Produits de saupoudrage - Microbilles de verre, granulats antidérapants et mélange de ces deux composants est d’application

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exigences générales</td>
</tr>
<tr>
<td>Granularité</td>
</tr>
<tr>
<td>Qualité</td>
</tr>
<tr>
<td>Indice de réfraction</td>
</tr>
<tr>
<td>Résistance à l’eau, à l’acide chlorhydrique au chlorure de calcium et au sulfate de sodium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exigences spécifiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrofugation</td>
</tr>
</tbody>
</table>

C. 52.2.2.2. MICROBILLES DE VERRE DE SAPOUDRAGE ET LES ÉLÉMENTS RÉTRORÉFLECHISSANTS

NBN EN 1423 - Produits de marquage routier - Produits de saupoudrage - Microbilles de verre, granulats antidérapants et mélange de ces deux composants est d’application

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Exigences générales</td>
</tr>
<tr>
<td>Granularité</td>
</tr>
<tr>
<td>Qualité</td>
</tr>
<tr>
<td>Indice de réfraction</td>
</tr>
<tr>
<td>Résistance à l’eau, à l’acide chlorhydrique au chlorure de calcium et au sulfure de sodium</td>
</tr>
<tr>
<td>Exigences spécifiques</td>
</tr>
<tr>
<td>Hydrofugation</td>
</tr>
</tbody>
</table>

C. 52.2.3. PRODUITS ANTIDÉRAPANTS

NBN EN 1423 - Produits de marquage routier - Produits de saupoudrage - Microbilles de verre, granulats antidérapants et mélange de ces deux composants est d’application

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exigences générales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granularité</td>
<td>ISO 2591-1</td>
<td></td>
</tr>
<tr>
<td>Caractéristiques chimiques</td>
<td>NBN EN ISO 787-9</td>
<td></td>
</tr>
<tr>
<td>Coordonnées trichromatiques et facteur de luminance</td>
<td>ISO 7724-2</td>
<td>L’échantillon, après avoir été pressé, est conservé dans le récipient, la surface découverte vers le haut et en position horizontale pour l’éclairement et l’observation.</td>
</tr>
<tr>
<td>Exigences spécifiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dureté</td>
<td>NBN EN ISO 11127-4</td>
<td></td>
</tr>
<tr>
<td>Coefficient de friabilité</td>
<td>NBN EN 1423</td>
<td></td>
</tr>
</tbody>
</table>

C. 52.2.4. MÉLANGES DE MICROBILLES ET DE PRODUITS ANTIDÉRAPANTS

NBN EN 1423 - Produits de marquage routier - Produits de saupoudrage - Microbilles de verre, granulats antidérapants et mélange de ces deux composants est d’application

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exigences générales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Détermination de la teneur en granulats</td>
<td>NBN EN 1423</td>
<td></td>
</tr>
</tbody>
</table>

C. 53.1.1. - C. 53.1.5. MATÉRIAUX POUR SIGNAUX ROUTIERS: ALUMINIUM, ACIER, ÉLÉMENTS DE BOULONNERIE, BÉTON POUR FONDATION, COLLES DE FIXATION

Les essais sont ceux cités dans la NBN EN 12899-1, EAD 120001-01-0106 et le PTV 662

PERFORMANCE DES SIGNAUX ROUTIERS: RECOUVREMENT (FILMS) DES PANNEAUX

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance aux chocs</td>
<td>NBN EN ISO 6272</td>
<td>paramètres d’essai selon NBN EN 12899-1</td>
</tr>
<tr>
<td>Matériaux non rétroréfléchissants</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CARACTÉRISTIQUES MESURÉES OU NOM DE L'ESSAI

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L'ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couleur et facteur de luminance</td>
<td>CIE 15</td>
<td>paramètres d'essai selon NBN EN 12899-1</td>
</tr>
<tr>
<td>Durabilité des performances visuelles</td>
<td>NBN EN ISO 877</td>
<td>paramètres d'essai selon NBN EN 12899-1</td>
</tr>
</tbody>
</table>

Matériaux rétroréfléchissants

films avec microbilles de verre (NBN EN 12899-1)

<table>
<thead>
<tr>
<th>Couleur et facteur de luminance</th>
<th>CIE 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient de rétroréflexion</td>
<td>CIE 54.2</td>
</tr>
</tbody>
</table>

films microprismatiques

<table>
<thead>
<tr>
<th>Couleur et facteur de luminance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient de rétroréflexion</td>
</tr>
</tbody>
</table>

PERFORMANCE DES SIGNAUX ROUTIERS: ASPECTS CONSTRUCTIFS

<table>
<thead>
<tr>
<th>Déformation des panneaux par rapport au support</th>
<th>NBN EN 12899-1 (calcul ou essai)</th>
<th>paramètres selon PTV 662</th>
</tr>
</thead>
<tbody>
<tr>
<td>Déformation des supports par rapport à l'ancrage</td>
<td>NBN EN 12899-1 (calcul ou essai)</td>
<td>paramètres selon PTV 662</td>
</tr>
</tbody>
</table>

PERFORMANCE DES SIGNAUX ROUTIERS: AUTRES

<table>
<thead>
<tr>
<th>Sécurité passive</th>
<th>NBN EN 12767</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la corrosion</td>
<td>NBN EN ISO 1461 (éléments en acier)</td>
</tr>
<tr>
<td>Perforation face du panneau</td>
<td>observation visuelle</td>
</tr>
<tr>
<td>Bord du panneau</td>
<td>observation visuelle</td>
</tr>
<tr>
<td>Dimensions</td>
<td>mesurer</td>
</tr>
<tr>
<td>Rectitude des fûts et traverser</td>
<td>observation visuelle</td>
</tr>
<tr>
<td>Planéité des panneaux</td>
<td>mesurer</td>
</tr>
</tbody>
</table>

PERFORMANCE DES SIGNAUX ROUTIERS: AUTRES

<table>
<thead>
<tr>
<th>Stabilité des socles</th>
<th>calcul selon PTV 662</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance des socles en béton</td>
<td>contrôle selon NBN EN 206-1 et NBN B15-001</td>
</tr>
</tbody>
</table>

C. 55. MOBILIER URBAIN

C. 56. MATÉRIAUX POUR PROTECTION DE BERGES ET DE TALUS

C. 57. COMPOSANTS DE RÉSEAUX D'ADDUCTION ET DE DISTRIBUTION D'EAU POTABLE - RÈGLES DE BASE

Les essais sont ceux prévus C. 57 et les documents du marché

C. 58. TUYAUX, RACCORDS, APPAREILS ET ACCESSOIRES POUR L'ADDUCTION ET LA DISTRIBUTION D'EAU POTABLE

Les essais sont ceux prévus dans C. 58 et les documents du marché
<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. 59. AUTRES FOURNITURES SPÉCIFIQUES À L'ÉTABLISSEMENT DES INSTALLATIONS D'ADDUCTION ET DE DISTRIBUTION D'EAU POTABLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Les essais sont ceux prévus dans C. 59 et les documents du marché</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. 60 ASPHALTE COULÉ

C. 60.1. ASPHALTE COULÉ COMME COUCHE D'ÉTANCHÉITÉ

<table>
<thead>
<tr>
<th>Résistance à l'indentation</th>
<th>NBN EN 12697-20</th>
<th>Type d'éprouvette C, surface du poinçon 500 mm², (22 ± 1) °C</th>
</tr>
</thead>
</table>
| Teneur en vides | CME 54.09 | préparation des échantillons:
fabrication de plaques d'essais d'une épaisseur de 30 ± 5 mm dans des moules et sur une feuille de fibres de verre.
prélèvement de 3 échantillons prismatiques ou cylindriques avec une surface de 100 cm² |
| Retrait contrarié | CME 58.11 | |
| Résistance à l'orniérage | NBN EN 12697-22 | CME 58.12 |
| Granulométrie | NBN EN 12697-2+A1 |

| Teneur en liant | NBN EN 12697-1 méthode B.2 ou méthode C (pour autocontrôle, après démonstration de l'équivalence) | Méthode B.2: préparation de l'échantillon: remuage constant du mélange solvant-asphalte coulé (sous reflux)
solvant:
trichloroéthylène, dichlorométhane pour l'essai sans récupération
trichloroéthylène, toluène ou xylène si le liant doit être récupéré |

C. 60.2. ASPHALTE COULÉ POUR ÉLÉMENTS LINÉAIRES

<table>
<thead>
<tr>
<th>Résistance à l'indentation</th>
<th>NBN EN 12697-20</th>
<th>Type d'éprouvette C, surface du poinçon 500 mm², (40 ± 1) °C</th>
</tr>
</thead>
</table>
| Teneur en vides | CME 54.09 | préparation des échantillons:
fabrication de plaques d'essais d'une épaisseur de 30 ± 5 mm dans des moules et sur une feuille de fibres de verre.
prélèvement de 3 échantillons prismatiques ou cylindriques avec une surface de 100 cm² |
<p>| Granulométrie | NBN EN 12697-2+A1 |</p>
<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneur en liant</td>
<td>NBN EN 12697-1 méthode B.2 ou méthode C (pour autocontrôle, après démonstration de l’équivalence)</td>
<td>Méthode B.2: préparation de l’échantillon: remuage constant du mélange solvant-asphalte coulé (sous reflux) solvant: trichloroéthylène, dichlorométhane pour l'essai sans récupération trichloroéthylène, toluène ou xylène si le liant doit être récupéré</td>
</tr>
</tbody>
</table>

C. 60.3. ASPHALTE COULÉ COMME COUCHE DE PROTECTION

<table>
<thead>
<tr>
<th>Résistance à l'indentation</th>
<th>NBN EN 12697-20</th>
<th>Type d’éprouvette C, surface du poinçon 500 mm², (40 ± 1) °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneur en vides</td>
<td>CME 54.09</td>
<td>préparation des échantillons: fabrication de plaques d'essais d'une épaisseur de 30 ± 5 mm dans des moules et sur une feuille de fibres de verre. prélèvement de 3 échantillons prismatiques ou cylindrique avec une surface de 100 cm²</td>
</tr>
</tbody>
</table>

| Retrait contrarié | CME 58.11 | |

<table>
<thead>
<tr>
<th>Résistance à l'orniérage</th>
<th>NBN EN 12697-22</th>
<th>CME 58.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulométrie</td>
<td>NBN EN 12697-2+A1</td>
<td></td>
</tr>
</tbody>
</table>

| Teneur en liant | NBN EN 12697-1 méthode B.2 ou méthode C (pour autocontrôle, après démonstration de l’équivalence) | |

C. 60.4. ASPHALTE COULÉ POUR REVÊTEMENT ET RÉPARATION

<table>
<thead>
<tr>
<th>Résistance à l'indentation</th>
<th>NBN EN 12697-20</th>
<th>Type d’éprouvette C, surface du poinçon 500 mm², (40 ± 1) °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneur en vides</td>
<td>CME 54.09</td>
<td>préparation des échantillons: fabrication de plaques d'essais d'une épaisseur de 30±5 mm dans des moules et sur une feuille de fibres de verre. prélèvement de 3 échantillons prismatiques ou cylindrique avec une surface de 100 cm²</td>
</tr>
</tbody>
</table>

| Retrait contrarié | CME 58.11 | |

<table>
<thead>
<tr>
<th>Résistance à l'orniérage</th>
<th>NBN EN 12697-22</th>
<th>CME 58.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulométrie</td>
<td>NBN EN 12697-2+A1</td>
<td></td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
<td>COMMENTAIRES ET AJOUTS</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>-----------------------</td>
</tr>
</tbody>
</table>
| Teneur en liant | NBN EN 12697-1 méthode B.2 ou méthode C (pour autocontrôle, après démonstration de l’équivalence) | Méthode B.2: préparation de l’échantillon: remuage constant du mélange solvant-asphalte coulé (sous reflux) solvant:
- trichloroéthylène, dichlorométhane pour l'essai sans récupération
- trichloroéthylène, toluène ou xylène si le liant doit être récupéré |

C. 60.5. ASPHALTE COULÉ POUR RÉPARATION DE FISSURES

<table>
<thead>
<tr>
<th>Résistance à l'indentation</th>
<th>NBN EN 12697-20</th>
<th>Type d’éprouvette C, surface du poinçon 500 mm², (22 ± 1) °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulométrie</td>
<td>NBN EN 12697-2+A1</td>
<td></td>
</tr>
</tbody>
</table>
| Teneur en liant | NBN EN 12697-1 méthode B.2 ou méthode C (pour autocontrôle, après démonstration de l’équivalence) | Méthode B.2: préparation de l’échantillon: remuage constant du mélange solvant-asphalte coulé (sous reflux) solvant:
- trichloroéthylène, dichlorométhane pour l'essai sans récupération
- trichloroéthylène, toluène ou xylène si le liant doit être récupéré |

C. 61. DOLOMIE

C. 62. DISPOSITIFS DE BALISAGE DES ROUTES

Les délinéateurs de balisage sont conformes aux spécifications du chapitre C.62

C. 63. DISPOSITIFS ANTI-ÉBLOUISSEMENT

Les dispositifs anti-éblouissement sont conformes aux spécifications de la norme NBN EN 12676-1.

C. 65. BENTONITE

Absorption au bleu de méthylène	VDG P-69
Teneur en eau	DIN 18121-1 ou DIN 18121-2
Poids spécifique du mélange sec	DIN 18124
Pouvoir absorption d'eau	DIN 18132
Indice de gonflement	ASTM D5890

D. 2. DÉMOLITION SÉLECTIVE

D. 2.1.1.2. FRAISAGE DE COUCHES DE CHAUSSÉE

| profil du fraisage (distance entre les axes des rainures, différence de hauteur crêtes/creux) | CME 62.01 | Mesure par le profilomètre à aiguilles |
Caractéristiques spécifiées

<table>
<thead>
<tr>
<th>Caractéristiques géométriques (profil en travers)</th>
<th>Levé topographique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperfections locales de planéité</td>
<td>NBN EN 13036-7</td>
</tr>
<tr>
<td>Optimum Proctor normal</td>
<td>NBN EN 13286-1 NBN EN 13286-2</td>
</tr>
<tr>
<td>Portance (coefficient de compressibilité)</td>
<td>CME 50.01</td>
</tr>
<tr>
<td>Résistance à la pénétration:</td>
<td></td>
</tr>
<tr>
<td>– pénétromètre dynamique type CRR</td>
<td>CME 50.03</td>
</tr>
<tr>
<td>– pénétromètre à énergie variable</td>
<td>CME 50.11</td>
</tr>
<tr>
<td>Taux de compactage</td>
<td>CME 50.07</td>
</tr>
<tr>
<td>Teneur en eau</td>
<td>NBN EN 1097-5 ou NBN EN ISO 17892-1</td>
</tr>
<tr>
<td>Granulométrie simplifiée</td>
<td>NBN EN 933-1</td>
</tr>
<tr>
<td>Valeur de bleu de méthylène</td>
<td>NBN EN 933-9+A1</td>
</tr>
<tr>
<td>Teneur en matières organiques</td>
<td>NBN EN 1744-1</td>
</tr>
<tr>
<td>CBR</td>
<td>NBN EN 13286-47</td>
</tr>
<tr>
<td>IPI</td>
<td>NBN EN 13286-47</td>
</tr>
<tr>
<td>Planche d'essais</td>
<td>CME 50.12</td>
</tr>
</tbody>
</table>

Taux d'épandage du liant

| Taux moyen par pesée des camions | NBN EN 12272-1 |
| Mesure ponctuelle à la plaque | NBN EN 12272-1 |

Taux d'épandage des granulats

| Taux moyen par pesée des camions | NBN EN 12272-1 |
| Mesure ponctuelle à la plaque | NBN EN 12272-1 |

Caractéristiques non spécifiées

Masse volumique in situ:	Autre méthode: gammadensimètre
– bouteille à sable	CME 52.03
– anneau volumétrique	CME 50.06
– mesure de densité méthodes alternatives	CME 50.09

E. 2. DEBLAIS / E. 3. REMBLAIS

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caractéristiques géométriques</td>
<td>Levé topographique</td>
<td></td>
</tr>
<tr>
<td>Module de déformation</td>
<td>CME 50.08</td>
<td></td>
</tr>
<tr>
<td>Module d'élasticité</td>
<td>CME 50.10</td>
<td></td>
</tr>
</tbody>
</table>

E. 3.5. / E. 3.6. REMBLAIS EN BLOCS LÉGERS / REMBLAIS EN GRANULATS D'ARGILE EXPANSÉE

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caractéristiques géométriques</td>
<td>Levé topographique</td>
</tr>
<tr>
<td>Module de déformation</td>
<td>CME 50.08</td>
</tr>
<tr>
<td>Module d'élasticité</td>
<td>CME 50.10</td>
</tr>
</tbody>
</table>
E. 3.7. MATÉRIAUX AUTOCOMPACTANT RÉEXCLAVABLE

<table>
<thead>
<tr>
<th>Caractéristiques géométriques</th>
<th>Levé topographique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrôle de la compacité au pénétromètre à énergie variable</td>
<td>CME 50.11</td>
</tr>
<tr>
<td>La résistance à la compression R'c à 28 jours</td>
<td>CME 52.05 (à modifier) NBN EN 12390-3 NBN EN 12390-4</td>
</tr>
</tbody>
</table>

E. 4. TERRASSEMENTS PARTICULIERS

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Levé topographique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caractéristiques géométriques (profil en travers)</td>
<td></td>
</tr>
<tr>
<td>Portance (coefficient de compressibilité)</td>
<td>CME 50.01</td>
</tr>
<tr>
<td>Résistance à la pénétration:</td>
<td></td>
</tr>
<tr>
<td>– pénétromètre dynamique type CRR</td>
<td>CME 50.03</td>
</tr>
</tbody>
</table>

E. 5. TERRASSEMENTS POUR CANALISATIONS, RACCORDEMENTS, CHAMBRES DE VISITE OU D’APPAREILS, DRAINS ET GAINES

Portance (coefficient de compressibilité)	CME 50.01
Résistance à la pénétration:	
– pénétromètre dynamique type CRR	CME 50.03
– pénétromètre à énergie variable	CME 50.11

F. 2. TRAVAUX PRÉPARATOIRES / F. 3. SOUS-FONDATIONS / F. 4.1. - F. 4.9. FONDATIONS

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Méthode à convenir: CME 55.03, CME 55.04 ou autre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosage liant (protection, fondation type III G)</td>
<td></td>
</tr>
<tr>
<td>Epaisseur de couche (matériau lié)</td>
<td>CME 52.04</td>
</tr>
<tr>
<td>Epaisseur de couche (matériau non lié)</td>
<td>CME 51.02</td>
</tr>
<tr>
<td>Essai Opticompact</td>
<td>CME 04.08</td>
</tr>
<tr>
<td>Essai Proctor standard</td>
<td>NBN EN 13286-1 et NBN EN 13286-2</td>
</tr>
<tr>
<td>Essai Proctor modifié</td>
<td>NBN EN 13286-1 et NBN EN 13286-2</td>
</tr>
<tr>
<td>Résistance à la traction indirecte d’un sol traité</td>
<td>NBN EN 13286-42 Essai brésilien</td>
</tr>
<tr>
<td>Résistance à la compression simple d’un sol traité</td>
<td>NBN EN 13286-41</td>
</tr>
<tr>
<td>Granularité</td>
<td>NBN EN 933-1</td>
</tr>
<tr>
<td>Indice C.B.R.</td>
<td>NBN EN 13286-47</td>
</tr>
<tr>
<td>Indice portant immédiat (I.P.I.)</td>
<td>NBN EN 13286-47</td>
</tr>
<tr>
<td>Limites d’Atterberg (w_L, w_P)</td>
<td>CME 01.03 NBN CEN/ISO TS 17892-12</td>
</tr>
<tr>
<td>Valeur au bleu de méthylène</td>
<td>NBN EN 933-9+A1 + PTV 820</td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L'ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Niveau de surface</td>
<td></td>
</tr>
<tr>
<td>Portance (coefficient de compressibilité)</td>
<td>CME 50.01</td>
</tr>
<tr>
<td>Perméabilité d'un empierrement drainant de type IV</td>
<td>CME 52.22</td>
</tr>
<tr>
<td>Perméabilité (béton maigre poreux)</td>
<td>CME 52.21</td>
</tr>
<tr>
<td>Porosité efficace (béton maigre poreux)</td>
<td>CME 52.20</td>
</tr>
<tr>
<td>Régularité de surface</td>
<td>NBN EN 13036-7</td>
</tr>
<tr>
<td>Résistance à la compression (sable-ciment type II / béton de fondation / retraitement en place avec ciment)</td>
<td>CME 52.05</td>
</tr>
<tr>
<td>Résistance à la compression (sable-ciment type I/ sable-laitier)</td>
<td>NBN EN 13286-41</td>
</tr>
<tr>
<td>Teneur en eau</td>
<td>CME 53.12</td>
</tr>
<tr>
<td>Teneur conventionnelle en matières organiques</td>
<td>NBN B11-256</td>
</tr>
<tr>
<td>Résistance à l'immersion</td>
<td>CME 52.23</td>
</tr>
<tr>
<td>Caractéristiques non spécifiées</td>
<td></td>
</tr>
<tr>
<td>Coefficient de planéité (uni longitudinal)</td>
<td>CME 53.11</td>
</tr>
<tr>
<td>Masse volumique apparente</td>
<td></td>
</tr>
<tr>
<td>- bouteille à sable</td>
<td>CME 52.03</td>
</tr>
<tr>
<td>- anneau volumétrique</td>
<td>CME 50.06</td>
</tr>
<tr>
<td>Résistance à la pénétration</td>
<td></td>
</tr>
<tr>
<td>- pénétromètre dynamique type CRR</td>
<td>CME 50.03</td>
</tr>
<tr>
<td>CBR in situ</td>
<td>ASTM D4429-83</td>
</tr>
</tbody>
</table>

F. 4.10. FONDATIONS EN GRAVE-BITUME

<p>| Granulométrie | NBN EN 12697-2+A1 | Séparation de la matière minérale selon méthode B.2.1 (Centrifugeuse à flux continu). Pour l'extraction du liant la méthode B.1.6 (Extraction à froid par agitation) est également permise |
| Teneur en liant | NBN EN 12697-1 | |
| Compactage giratoire | CME 54.39 | |
| Compactage Marshall | NBN EN 12697-30 | CME 54.16 |
| Malaxage en laboratoire | NBN EN 12697-35 | |
| Pourcentage de vides | CME 54.09 | |
| Essai au simulateur de trafic | NBN EN 12697-22 | CME 54.18 |
| Essai au simulateur de trafic (carottes) | NBN EN 12697-22 | CME 54.13 |
| Confection des éprouvettes au compacteur de plaques | NBN EN 12697-33 | |
| Prélèvement des échantillons | NBN EN 12697-27 | CME 54.27 |
| Préparation des échantillons | NBN EN 12697-28 | CME 54.28 |</p>
<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L'ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essai de sensibilité à l'eau</td>
<td>NBN EN 12697-12</td>
<td>CME 54.40</td>
</tr>
<tr>
<td>Compacité relative</td>
<td>CME 54.08</td>
<td></td>
</tr>
<tr>
<td>Coefficient de planéité</td>
<td>NBN EN 13036-6</td>
<td>CME 53.10</td>
</tr>
<tr>
<td>Régularité de surface (règle de 3 m)</td>
<td>NBN EN 13036-7</td>
<td></td>
</tr>
<tr>
<td>Récupération du liant</td>
<td>NBN EN 12697-3+A1</td>
<td></td>
</tr>
<tr>
<td>Portance (déflexion du revêtement au passage d'un essieu)</td>
<td>CME 54.26</td>
<td></td>
</tr>
<tr>
<td>Delta anneau-bille d'un mastic bit.</td>
<td>CME 54.37</td>
<td></td>
</tr>
<tr>
<td>Agrégat d'enrobés bitumineux:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Détectio de goudron</td>
<td>CME 54.42</td>
<td></td>
</tr>
</tbody>
</table>

G. PAVAGE-DALLAGE-REVÊTEMENTS EN GRANULATS - DISPOSITIFS DE SÉCURITÉ ET DE MODÉRATION DE LA VITESSE

G. 1. REVÊTEMENTS EN BÉTON DE CIMENT

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption d'eau (tranche supérieure)</td>
<td>CME 53.13</td>
</tr>
<tr>
<td>Coefficient de frottement transversal (SFCS)</td>
<td>CME 53.11</td>
</tr>
<tr>
<td>Coefficient de frottement longitudinal (LCFG)</td>
<td>CME 53.15</td>
</tr>
<tr>
<td>Coefficient de planéité (APL - uni longitudinal)</td>
<td>CME 53.10</td>
</tr>
<tr>
<td>Consistance du béton frais:</td>
<td></td>
</tr>
<tr>
<td>– essai d'affaissement</td>
<td>NBN EN 12350-2</td>
</tr>
<tr>
<td>– essai VéBé</td>
<td>NBN EN 12350-3</td>
</tr>
<tr>
<td>Couleur du béton</td>
<td>NBN EN 1436</td>
</tr>
<tr>
<td>Luminosité et chromaticité</td>
<td></td>
</tr>
<tr>
<td>Epaisseur du revêtement</td>
<td>NBN EN 13863-3</td>
</tr>
<tr>
<td>Régularité de surface (règle de 3m)</td>
<td>NBN EN 13036-7</td>
</tr>
<tr>
<td>Résistance à la compression</td>
<td>CME 52.05</td>
</tr>
<tr>
<td>Résistance au gel en présence de sel de déverglaçage</td>
<td>CME 53.16</td>
</tr>
<tr>
<td>• La résistance au gel en présence de sels de déverglaçage est mesurée sur la tranche supérieure de carottes prélevées in situ ayant une section de minimum 100 cm². Le béton doit avoir au moins 90 jours d'âge réel au début de l'essai. Le prélèvement des carottes a lieu au minimum 60 jours après la date de bétonnage.</td>
<td></td>
</tr>
<tr>
<td>• La face de l'éprouvette doit être représentative de la face du revêtement qui est soumis aux sels de déverglaçage</td>
<td></td>
</tr>
<tr>
<td>Teneur en air occlus du béton durci</td>
<td>NBN EN 480-11</td>
</tr>
<tr>
<td>Teneur en air occlus du béton frais</td>
<td>NBN EN 12350-7</td>
</tr>
</tbody>
</table>

<p>| Caractéristiques non spécifiées | |
| Battement des dalles au joint | CME 53.14 |
| Consistance du béton frais: | |</p>
<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>– essai de compactibilité</td>
<td>NBN EN 12350-4</td>
<td></td>
</tr>
<tr>
<td>– essai d’étalement à la table à secousses</td>
<td>NBN EN 12350-5</td>
<td></td>
</tr>
<tr>
<td>Masse volumique du béton frais compacté</td>
<td>NBN EN 12350-6</td>
<td></td>
</tr>
<tr>
<td>Masse volumique du béton durci</td>
<td>NBN EN 12390-7</td>
<td></td>
</tr>
<tr>
<td>Régularité de surface transversale (gabarit sur machine de finition)</td>
<td>CME 53.06</td>
<td></td>
</tr>
<tr>
<td>Résistance à la traction par fendage</td>
<td>NBN EN 12390-6</td>
<td></td>
</tr>
<tr>
<td>Teneur en eau du béton frais</td>
<td>CME 53.12</td>
<td></td>
</tr>
<tr>
<td>Texture de surface</td>
<td>NBN EN 13036-1</td>
<td>Autre méthode: profilomètre optique (statique, dynamique)</td>
</tr>
<tr>
<td>Enrobage et diamètre des armatures dans un revêtement de béton de ciment</td>
<td>CME 53.17</td>
<td></td>
</tr>
</tbody>
</table>

G. 2. REVÊTEMENTS BITUMINEUX

<table>
<thead>
<tr>
<th>Granulométrie</th>
<th>NBN EN 12697-2+A1</th>
<th>Séparation de la matière minérale selon méthode B.2.1 (Centrifugeuse à flux continu). Pour l'extraction du liant la méthode B.1.6 (Extraction à froid par agitation) est également permise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneur en liant</td>
<td>NBN EN 12697-1</td>
<td></td>
</tr>
<tr>
<td>Egouttage du liant</td>
<td>NBN EN 12697-18</td>
<td>préciser méthode au panier - méthode Schellenberg suivant le type d'enrobé</td>
</tr>
<tr>
<td>Compactage giratoire</td>
<td>CME 54.39</td>
<td></td>
</tr>
<tr>
<td>Compactage Marshall</td>
<td>NBN EN 12697-30</td>
<td>CME 54.16</td>
</tr>
<tr>
<td>Malaxage en laboratoire</td>
<td>NBN EN 12697-35</td>
<td></td>
</tr>
<tr>
<td>Pourcentage de vides</td>
<td>CME 54.09</td>
<td></td>
</tr>
<tr>
<td>Essai au simulateur de trafic</td>
<td>NBN EN 12697-22</td>
<td>CME 54.18</td>
</tr>
<tr>
<td>Essai au simulateur de trafic (carottes)</td>
<td>NBN EN 12697-22</td>
<td>CME 54.13</td>
</tr>
<tr>
<td>Confection des échantillons au compacteur de plaques</td>
<td>NBN EN 12697-33</td>
<td></td>
</tr>
<tr>
<td>Prélèvement des échantillons</td>
<td>NBN EN 12697-27</td>
<td>CME 54.27</td>
</tr>
<tr>
<td>Préparation des échantillons</td>
<td>NBN EN 12697-28</td>
<td>CME 54.28</td>
</tr>
<tr>
<td>Perte de masse (essai cantabro)</td>
<td>NBN EN 12697-17</td>
<td>préparation de 5 échantillons à 2x50 coups température: 18 ± 2°C</td>
</tr>
<tr>
<td>Essai de sensibilité à l'eau</td>
<td>NBN EN 12697-12</td>
<td>CME 54.40</td>
</tr>
<tr>
<td>Epaisseur totale du revêtement et épaisseur des différentes couches</td>
<td>NBN EN 12697-36</td>
<td></td>
</tr>
<tr>
<td>Compacité relative</td>
<td>CME 54.08</td>
<td></td>
</tr>
<tr>
<td>Planéité transversale</td>
<td>CME 54.25</td>
<td></td>
</tr>
<tr>
<td>Coefficient de planéité (APL - uni longitudinal)</td>
<td>CME 53.10</td>
<td></td>
</tr>
<tr>
<td>Régularité de surface (règle de 3 m)</td>
<td>NBN EN 13036-7</td>
<td></td>
</tr>
<tr>
<td>Texture de surface</td>
<td>NBN EN 13036-1</td>
<td></td>
</tr>
<tr>
<td>Drainabilité des enrobés drainants</td>
<td>NBN EN 13036-3</td>
<td></td>
</tr>
<tr>
<td>Couleur de l'enrobé coloré</td>
<td>Méthode CRR MF90/15</td>
<td></td>
</tr>
<tr>
<td>Perméabilité des éprouvettes</td>
<td>NBN EN 12697-19</td>
<td></td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
<td>COMMENTAIRES ET AJOUTS</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Récupération du liant</td>
<td>NBN EN 12697-3+A1</td>
<td></td>
</tr>
<tr>
<td>Portance (déflexion du revêtement au passage d’un essieu)</td>
<td>CME 54.26</td>
<td></td>
</tr>
<tr>
<td>Delta anneau-bille d’un mastic bit.</td>
<td>CME 54.37</td>
<td></td>
</tr>
<tr>
<td>Teneur en liant des granulats préenrobés</td>
<td>NBN EN 12697-1</td>
<td></td>
</tr>
<tr>
<td>Agrégat d’enrobés bitumineux: % de goudron</td>
<td>CME 54.42</td>
<td></td>
</tr>
<tr>
<td>Coefficient de frottement transversal (SFCS)</td>
<td>CME 53.11</td>
<td>Méthode de référence: SCRIM. L’odoligraphie est permis si une corrélation est démontrée</td>
</tr>
<tr>
<td>Coefficient de frottement longitudinal (LFCG)</td>
<td>CME 53.15</td>
<td></td>
</tr>
<tr>
<td>Taud d’épandage</td>
<td>CME 55.04</td>
<td></td>
</tr>
<tr>
<td>- taux moyen par pesée des camions</td>
<td>CME 55.04</td>
<td></td>
</tr>
<tr>
<td>- mesure ponctuelle à la platine</td>
<td>NBN EN 12272-1</td>
<td></td>
</tr>
<tr>
<td>Essai sur enrobés stockables: en attente du chapitre M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G. 3. REVETEMENTS EN ASPHALTE COULE (MA), ENDUITS SUPERFICIELS, MATERIAUX BITUMINEUX COULES A FROID (MBCF), ET ENDUITS SPECIAUX

G. 3.1. ASPHALTE COULÉ (MA)

<table>
<thead>
<tr>
<th>Résistance à l'indentation</th>
<th>NBN EN 12697-20</th>
<th>Type d'éprouvette C, surface du poinçon 500 mm², (40 ± 1) °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulométrie</td>
<td>NBN EN 12697-2+A1</td>
<td></td>
</tr>
<tr>
<td>Teneur en liant</td>
<td>NBN EN 12697-1 méthode B.2 ou méthode C (pour autocontrôle, après démonstration de l’équivalence)</td>
<td>Méthode B.2: préparation de l’échantillon: remuage constant du mélange solvant-asphalte coulé (sous reflux) solvant: • trichloroéthylène, dichlorométhane pour l'essai sans récupération • trichloroéthylène, toluène ou xylène si le liant doit être récupéré</td>
</tr>
</tbody>
</table>

G. 3.2. ENDUITS SUPERFICIELS

Coefficient de frottement transversal (SFCS)	CME 53.11	
Coefficient de frottement longitudinal (LFCG)	CME 53.17	
Taux d’épandage	NBN EN 12272-1	
Taux moyen par pesée des camions	CME 55.04	
Texture de surface	NBN EN 13036-1 / ISO 13473-5 (laser)	
Essais de type initiaux (TAIT)	NBN EN 12271	

G. 3.3. MATÉRIAUX BITUMINEUX COULÉS À FROID (MBCF)

| Coefficient de frottement transversal | CME 53.11 (SCRIM-ODOLIO et corrélation) | |

Q. 54
<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l’essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient de planéité (uni longitudinal)</td>
<td>CME 53.10</td>
<td></td>
</tr>
<tr>
<td>Couleur du MBCF</td>
<td>CME 54.41</td>
<td></td>
</tr>
<tr>
<td>Granularité (MBCF)</td>
<td>NBN EN 12697-2+A1</td>
<td></td>
</tr>
<tr>
<td>Régularité de surface (règle de 3 m)</td>
<td>NBN EN 13036-7</td>
<td></td>
</tr>
<tr>
<td>Taux d’épandage du MBCF</td>
<td>NBN EN 12274-6</td>
<td></td>
</tr>
<tr>
<td>Teneur en liant (MBCF):</td>
<td>NBN EN 12274-2</td>
<td></td>
</tr>
<tr>
<td>Prélèvement (MBCF)</td>
<td>NBN EN 12274-1</td>
<td></td>
</tr>
<tr>
<td>Texture de surface</td>
<td>NBN EN 13036-1 / ISO 13473-5 (laser)</td>
<td></td>
</tr>
<tr>
<td>Echantillonnage</td>
<td>NBN EN 12274-1</td>
<td></td>
</tr>
</tbody>
</table>

G. 3.4. ENDUITS SCELLES PAR UN MBCF

Voir G. 3.2 et G. 3.3.

G. 3.5. ENDUIT SUPERFICIEL À HAUTE PERFORMANCE (ESHP)

<table>
<thead>
<tr>
<th></th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taux d’épandage du ESHP</td>
<td>NBN EN 12272-1</td>
</tr>
<tr>
<td>Coefficient de frottement transversal (SFCS)</td>
<td>CME 53.11</td>
</tr>
<tr>
<td>Coefficient de frottement longitudinal (LFCG)</td>
<td>CME 53.07</td>
</tr>
<tr>
<td>Couleur de l'ESHP</td>
<td>CME 54.41</td>
</tr>
<tr>
<td>Texture de surface</td>
<td>NBN EN 13036-1 / ISO 13473-5 (laser)</td>
</tr>
<tr>
<td>Evaluation visuelle des défauts</td>
<td>NBN EN 12272-2</td>
</tr>
</tbody>
</table>

G. 4. / G. 5. PAVAGE, DALLAGE

Caractéristiques spécifiées

<table>
<thead>
<tr>
<th></th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Régularité de surface (règle de 3 m)</td>
<td>NBN EN 13036-7</td>
</tr>
</tbody>
</table>

Caractéristiques non spécifiées

<table>
<thead>
<tr>
<th></th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient de frottement transversal</td>
<td>CME 53.11</td>
</tr>
<tr>
<td>Coefficient de planéité (uni longitudinal)</td>
<td>CME 53.10</td>
</tr>
<tr>
<td>Rugosité (adhérence SRT)</td>
<td>NBN EN 13036-4</td>
</tr>
</tbody>
</table>

G. 6. REVÊTEMENTS EN GRANULATS

Contrôles avant l’exécution

<table>
<thead>
<tr>
<th></th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>module de compressibilité</td>
<td>CME 50.01</td>
</tr>
</tbody>
</table>

Contrôles en cours d’exécution

<table>
<thead>
<tr>
<th></th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>profil de la surface</td>
<td>méthode à convenir</td>
</tr>
<tr>
<td>planéité de la surface</td>
<td>NBN EN 13036-7</td>
</tr>
<tr>
<td>capacité portante</td>
<td>CME 50.01</td>
</tr>
<tr>
<td>dévers de la surface</td>
<td>méthode à convenir</td>
</tr>
<tr>
<td>épaisseur des couches (matériau lié)</td>
<td>CME 52.04</td>
</tr>
</tbody>
</table>
G. 7. DISPOSITIFS DE SÉCURITÉ ET DE MODÉRATION DE LA VITESSE

<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l’essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>épaisseur des couches (matériau non lié)</td>
<td>CME 51.02</td>
<td></td>
</tr>
</tbody>
</table>

| Essais en cours d’exécution | | |
| régularité de surface de la fondation | NBN EN 13036-7 | |

Contrôles après exécution		
profil en long	méthode CRR MF77/06	
profil en travers	méthode CRR MF77/06	
régularité de surface	méthode CRR MF77/06	
planéité de surface	méthode CRR MF77/06	

H. ELÉMENTS LINÉAIRES

Selon la nature des matériaux utilisés, voir les méthodes d’essai appropriées mentionnées pour le chapitre C.

H. 1. BORDURES, FILETS D’EAU, BORDURES-FILETS D’EAU ET BANDES DE CONTREBUTAGE

H. 1.1. BORDURES EN PIERRE NATURELLE

| Contrôle des dimensions | mesurer | |
| Tolérance par rapport au tracé prescrit | mesurer | |

H. 1.2. / H. 1.3. ELÉMENTS LINÉAIRES EN BÉTON PRÉFABRIQUÉS OU COULÉS EN PLACE

Caractéristiques spécifiées		
Absorption d’eau	CME 53.13	
Blancheur (béton blanc)	NBN EN 1436, annexe C	
Régularité de surface (règle de 3 m)	NBN EN 13036-7	
Résistance à la compression	CME 52.05	
Résistance au gel en présence de sel de déverglaçage	CME 53.16	• La résistance au gel en présence de sels de déverglaçage est mesurée sur la tranche supérieure de carottes prélevées in situ ayant une section de minimum 100 cm². Le béton doit avoir au moins 90 jours d’âge réel au début de l’essai. Le prélèvement des carottes a lieu au minimum 60 jours après la date de bétonnage. • La face de l’éprouvette doit être représentative de la face du revêtement qui est soumis aux sels de déverglaçage

| Teneur en air occlus du béton frais | NBN EN 12350-7 | |
### CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI	RÉFÉRENCE DU MODE OPÉRATOIRE	COMMENTAIRES ET AJOUTS
Résistance à l'indentation | NBN EN 12697-20 | Type d'éprouvette C, surface du poinçon 500 mm², (22 ± 1) °C
Teneur en vides | CME 54.09 | préparation des échantillons:
• fabrication de plaques d'essais d'une épaisseur de 30 ± 5 mm dans des moules et sur une feuille de fibres de verre.
• prélèvement de 3 échantillons prismatiques ou cylindrique avec une surface de 100 cm²
Granulométrie | NBN EN 12697-2+A1 | —
Teneur en liant | NBN EN 12697-1 méthode B.2 ou méthode C (pour autocontrôle, après démonstration de l'équivalence) | Méthode B.2:
préparation de l'échantillon:
remuage constant du mélange solvant-asphalte coulé (sous reflux)
solvant:
• trichloroéthylène, dichlorométhane pour l'essai sans récupération
• trichloroéthylène, toluène ou xylène si le liant doit être récupéré
Régularité de surface (règle de 3 m) | NBN EN 13036-7 | —

H. 1.4. ÉLÉMENTS LINÉAIRES EN ASPHALTE COULÉ

H. 1.5. ÉLÉMENTS LINÉAIRES EN PAVAGE

Les vérifications du G. 4.2.2 sont d’application

H. 2. DISPOSITIFS DE RETENUE

H. 2.1. DISPOSITIFS DE RETENUE EN BÉTON PRÉFABRIQUÉ

Les contrôles portent sur le respect des tolérances d'alignement et de niveau, sur la géométrie du système et sur le respect des modalités de mise en œuvre sur chantier.

H. 2.2. DISPOSITIFS DE RETENUE EN BÉTON COULÉ EN PLACE

Contrôles en cours d'exécution

Les prescriptions du H. 1.3.4.1. sont d’application.

Contrôles après exécution

Les contrôles portent sur la résistance à la compression, l'absorption d'eau, la régularité de surface, l'alignement et les qualités optiques pour les bétons de ciment blanc.

H. 2.3. DISPOSITIFS DE RETENUE EN ACIER

Contrôles en cours d'exécution

Les contrôles portent sur le respect des tolérances d'alignement et de niveau, sur la géométrie du système, sur la profondeur d'enfoncement des supports et sur le respect des modalités de mise en œuvre sur chantier.

H. 2.4. DISPOSITIFS DE RETENUE MIXTES ACIER-BOIS

Contrôles en cours d'exécution
Les contrôles portent sur le respect des tolérances d'alignement et de niveau, sur la géométrie du système, sur la profondeur d'enfoncement des supports et sur le respect des modalités de mise en œuvre sur chantier.

H. 2.5. LISSES DE SÉCURITÉ POUR MOTOCYCLISTES

<table>
<thead>
<tr>
<th>Contrôles en cours d'exécution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Les contrôles portent sur le respect de l'alignement et du niveau, sur la géométrie et sur le respect des modalités de mise en œuvre sur chantier.</td>
</tr>
</tbody>
</table>

H. 2.6. ATTÉNUATEURS DE CHOCs FIXES

Les contrôles portent sur le respect des tolérances d'alignement et de niveau, sur la géométrie et sur le respect des modalités de mise en œuvre sur chantier.

I. DRAINAGE ET ÉGOUTTAGE

I. 1. DRAINAGE

| pénétromètre dynamique | CME 50.03 |

I. 2. CANALISATIONS EN TUYAUX

| essai d'étanchéité à l'eau | CME 57.04 |
| essai d'étanchéité à l'air | CME 57.04 |

I. 8. RÉPARATION ET RÉNOVATION DE CANALISATIONS ET DE REGARDS

Les essais sont ceux prévus dans le chapitre I. 8.

I. 8.6. COQUES ET CUNETTES EN POLYESTER ARMÉ DE FIBRES DE VERRE

| Résistance à la compression | NBN EN 1015-11 |
| Retrait et gonflement à 28 jours | NBN EN 480-3 |

I. 8.9. PANNEAUX PRÉFABRIQUÉS EN GRÈS (DALLES CÉRAMIQUES)

| Résistance à la traction (adhérence) | CME 57.08 |
| Adhérence de la résine d'époxy sur les flancs des plaques | méthode à convenir |

I. 8.10. RÉNOVATION DE CANALISATIONS PAR PROJECTION DE MATÉRIAUX HYDRAULIQUES

| Adhérence | NBN EN 1542 | durcissement 28 jours à une température ≥ 5 °C |

I. 8.11. RÉPARATION OU RÉNOVATION AU MOYEN D'UN MORTIER

<p>| Résistance en compression | NBN EN 1015-11 |</p>
<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L'ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance en flexion</td>
<td>NBN EN 1015-11</td>
<td></td>
</tr>
<tr>
<td>Adhérence</td>
<td>NBN EN 1542</td>
<td></td>
</tr>
<tr>
<td>Diamètre maximal des granulats</td>
<td>NBN EN 933-1</td>
<td></td>
</tr>
</tbody>
</table>

I. 8.13. PROTECTION CONTRE LA CORROSION

I. 8.13.1. PROTECTION CONTRE LA CORROSION AU MOYEN DE RESINE EPOXY ARMÉE DE FIBRES

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la traction</td>
<td>NBN EN ISO 527</td>
<td></td>
</tr>
<tr>
<td>Allongement à la traction</td>
<td>NBN EN ISO 527</td>
<td></td>
</tr>
<tr>
<td>Résistance à la compression</td>
<td>NBN EN 196-1</td>
<td></td>
</tr>
<tr>
<td>Résistance à l'abrasion</td>
<td>test CNR (compagnie Nationale du Rhône)</td>
<td></td>
</tr>
<tr>
<td>Adhérence</td>
<td>CME 57.09</td>
<td>échantillon trempé dans une solution liquide d'un pH < 1 durant 12 jours à 20°C</td>
</tr>
<tr>
<td>Résistance chimique</td>
<td>NBN EN ISO 2812-1</td>
<td></td>
</tr>
<tr>
<td>Résistance à la température</td>
<td>ISO/TR 10358</td>
<td></td>
</tr>
<tr>
<td>Profondeur de pénétration d'eau sous pression</td>
<td>NBN EN 12390-8</td>
<td></td>
</tr>
</tbody>
</table>

I. 8.13.3. PROTECTION CONTRE LA CORROSION AU MOYEN DE MORTIERS "ANTI-CORROSION"

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la compression</td>
<td>NBN EN 196-1</td>
<td></td>
</tr>
<tr>
<td>Valeur résiduel en compression du béton de l'ouvrage</td>
<td>NBN EN 12504-2</td>
<td>(scléromètre)</td>
</tr>
<tr>
<td>Retrait et gonflement</td>
<td>DIN 52450</td>
<td></td>
</tr>
<tr>
<td>Traction-flexion</td>
<td>NBN EN 196-1</td>
<td></td>
</tr>
<tr>
<td>Résistance à la corrosion</td>
<td>méthode à convenir</td>
<td></td>
</tr>
<tr>
<td>Résistance aux sulfates</td>
<td>CME 57.10</td>
<td></td>
</tr>
<tr>
<td>Résistance au gel</td>
<td>méthode à convenir</td>
<td></td>
</tr>
<tr>
<td>Résistance à l'abrasion</td>
<td>NBN EN 295-3</td>
<td></td>
</tr>
<tr>
<td>Résistance en présence de fluides organiques</td>
<td>NBN EN 13529</td>
<td></td>
</tr>
</tbody>
</table>

I. 8.15. TUBAGE SANS ESPACE ANNULAIRE AU MOYEN DE TUBES EN PEHD CONTINUS PREDEFORMES (CLOSE-FIT-LINING)

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densité</td>
<td>NBN EN ISO 1183</td>
<td>e ≤ 12 mm: 100 ± 10 mm/min e > 12 mm: 25 ± 2,5 mm/min</td>
</tr>
<tr>
<td>Résistance à la traction</td>
<td>NBN EN ISO 6259-1</td>
<td>paramètres d'essai selon NBN EN ISO 527-1</td>
</tr>
<tr>
<td>Allongement à la rupture</td>
<td>NBN EN ISO 6259-1</td>
<td>paramètres d'essai selon NBN EN ISO 527-1</td>
</tr>
<tr>
<td>Stabilité thermique - Temps d'induction à l'oxydation (OIT) (200°C)</td>
<td>NBN EN 728</td>
<td></td>
</tr>
<tr>
<td>Indice de fluidité à chaud (MFR)</td>
<td>NBN EN ISO 1133-1</td>
<td>190°C; m = 5 kg</td>
</tr>
<tr>
<td></td>
<td>NBN EN ISO 1133-2</td>
<td></td>
</tr>
<tr>
<td>Teneur en matière volatile</td>
<td>NBN EN 12099</td>
<td></td>
</tr>
<tr>
<td>Caractéristiques mesurées ou nom de l’essai</td>
<td>Référence du mode opératoire</td>
<td>Commentaires et ajouts</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| Résistance à la pression interne | NBN EN 921 | 80 °C t > 165 h
| | | PE 80: \(\sigma = 4,6 \text{ MPa} \) |
| | | 80 °C t > 10.005 h
| | | PE 80: \(\sigma = 4,0 \text{ MPa} \) |

I. 8.16. INJECTIONS POUR STABILISATION DU SOL ET/OU COMBLEMENT DE CAVITÉS POUR OUVRAGES D’ASSAINISSEMENT

| Résistance à la compression (coulis de ciment) | NBN EN 1015-11 |

I. 8.17. RÉPARATION OU RÉNOVATION DES REGARDS DE VISITE (ET AUTRES OUVRAGES SIMILAIRES)

| Etanchéité | NBN EN 1610 |

I. 10. EXAMEN VISUEL DES OUVRAGES

L’inspection et les opérations associées sont réalisées conformément
- à la méthodologie SPGE pour l’établissement des cadastres des réseaux d’assainissement en Région wallonne
- au cahier technique IV « Méthodologie pour l’exécution des opérations d’examens visuels des réseaux d’assainissement ».
La codification des observations s’effectue conformément à la norme NBN EN 13508-2.

J. 1. REGARDS DE VISITE, BOITES DE BRANCHEMENT ET CHAMBRES POUR APPAREILS

Caractéristiques spécifiées | CME 57.07 |

J. 3. / J. 4. PETITS OUVRAGES EN BÉTON, BÉTON ARMÉ, ELEMENTS PRÉFABRIQUÉS EN BÉTON ARMÉ

Les essais sont ceux prévus par le document de référence QUALIROUTE-C-2.

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th>Défauts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect du béton: texture</td>
<td>fissures avec une ouverture supérieure ou égale à 0,15mm</td>
</tr>
<tr>
<td></td>
<td>défaut de surface (bulle d’air, cavité) avec une profondeur > 10mm ou un volume > 5cm³ (volume = produit de la profondeur maximale et de la surface du plus petit rectangle circonscrit du défaut)</td>
</tr>
<tr>
<td>mesurer les écarts par rapport au plan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspect du béton: planéité</th>
<th>mesurer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la compression (sur cube)</td>
<td>NBN EN 12390-1 /-2 /-3</td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Caractéristiques non spécifiées</td>
<td></td>
</tr>
<tr>
<td>Résistance à la compression (sur carottes)</td>
<td>CME 52.05</td>
</tr>
</tbody>
</table>

J. 5. MAÇONNERIE EN BRIQUES DE TERRE CUIE ET EN MATÉRIAUX AGGLOMÉRÉS

Méthodes d’essais à convenir

J. 6. MAÇONNERIE ARMÉE

Méthodes d’essais à convenir

J. 7. MAÇONNERIE EN PIERRE NATURELLE

Méthodes d’essais à convenir

J. 8. IMPERMÉABILISATION ET DRAINAGE DES MAÇONNERIES ET DU BÉTON

Méthodes d’essais à convenir

J. 9. COUVRE-MURS ET TABLETTE SOUS GARDE-CORPS

Méthodes d’essais à convenir

J. 10. PERRÉS, GABIONS ET ENROCHEMENTS

Méthodes d’essais à convenir

J. 11. ECRANS ET PAREMENTS ANTIBRUIT

Les contrôles portent sur
– les dimensions et la géométrie des éléments fabriqués et montés en atelier
– la géométrie de l’ouvrage et le respect des modalités de mise en œuvre sur chantier

J. 12. GARDE-CORPS METALLIQUES

Spécifications selon NBN EN 10025-1 à 6
Résistance à la traction NBN EN 10002-1
Résilience NBN EN ISO 148-1
Les vérifications portent sur
– l’aspect, les dimensions et la géométrie des éléments fabriqués
– l’aspect, l’épaisseur et l’adhérence du système anticorrosion

K. OUVRAGES D’ART

K. 2. FONDATIONS PROFONDES

Essais de mise en charge dynamiques CME 65.01
K. 3. OUVRAGES EN BETON ET MACONERIE

Les essais sont ceux prévus par les normes et documents cités en K. 3.

<table>
<thead>
<tr>
<th>Nom de l'essai</th>
<th>Référence du mode opératoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Béton</td>
<td>Les essais sont ceux prévus par le document de référence QUALI ROUTES-C-2</td>
</tr>
<tr>
<td>Mortier</td>
<td>Les essais sont ceux prévus par les normes et documents cités en J. 5, J. 6 et J. 7</td>
</tr>
</tbody>
</table>

K. 4. OUVRAGES EN BETON ET MACONERIE

Les essais sont ceux prévus par les normes et documents cités en K. 4.

K. 5. ACIERS POUR BETON ARMÉ

Les essais sont ceux prévus par les normes et documents cités en K. 5.

K. 6. ACIERS POUR OUVRAGES MÉTALLIQUES

Spécifications selon NBN EN 10025-1 à 6

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la traction</td>
<td>NBN EN 10002-1</td>
</tr>
<tr>
<td>Résilience</td>
<td>NBN EN ISO 148-1</td>
</tr>
</tbody>
</table>

K. 6.2. PROTECTION DES ACIERS

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhérence de la chape au support:</td>
<td></td>
</tr>
<tr>
<td>– feuille (essai sur site)</td>
<td>CME 63.05</td>
</tr>
<tr>
<td>– résine (essai en laboratoire)</td>
<td>CME 63.06</td>
</tr>
<tr>
<td>– résine (essai sur site)</td>
<td>CME 63.07</td>
</tr>
<tr>
<td>Résistance superficielle du béton</td>
<td>NBN B14-210</td>
</tr>
<tr>
<td>support (adhérence par arrachement)</td>
<td></td>
</tr>
</tbody>
</table>

Peintures: spécifications selon NBN EN 12944

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneur en matières volatiles</td>
<td>NBN EN ISO 3251</td>
</tr>
<tr>
<td>Poids spécifique</td>
<td>NBN EN ISO 2811-1</td>
</tr>
<tr>
<td>Teneur en cendres</td>
<td>NF T30-012</td>
</tr>
</tbody>
</table>

K. 7. ELÉMENTS POUR OUVRAGES D'ART

Les essais sont ceux prévus par les normes produits citées au K.7 et par le document de référence QUALI ROUTES-C-2.

K. 8. DISPOSITIFS D'APPUI, JOINTS DE DILATATION ET D'ÉTANCHÉITÉ

K. 8.1. APPUI EN NÉOPRÈNE / K.8.2. APPUI SPÉCIAUX

Les contrôles portent sur les dimensions et sur les conditions de mise en œuvre des appuis.
K. 8.3. JOINT DE DILATATION POUR PONT

Les vérifications portent sur le contrôle des matériaux et leur mise en œuvre (conformément au manuel de pose).

K. 9. PROTECTION DES OUVRAGES

K. 9.1. ETANCHÉITÉ DES DALLES DE TABLIER

<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l’essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planéité</td>
<td>A la réglette d’épaisseur (ou autre instrument adéquat) des écarts du support par rapport à une règle de 200 mm posé sur celui-ci</td>
<td>Les dimensions des pastilles sont de (100 x 100) mm². Les pastilles sont collées à la surface du support béton. L’adhésif utilisé ne doit pas pénétrer dans le support</td>
</tr>
<tr>
<td>Creux, aspérités, escaliers</td>
<td>Au profilomètre à aiguilles (ou tout autre instrument adéquat)</td>
<td></td>
</tr>
<tr>
<td>Texture de surface</td>
<td>NBN EN 13036-1</td>
<td></td>
</tr>
<tr>
<td>Résistance à la traction en surface</td>
<td>NBN EN 1542</td>
<td></td>
</tr>
<tr>
<td>Ausculation par thermographie infrarouge</td>
<td>ASTM D 4788</td>
<td>L’essai est réalisé à l’aide de pastilles carrées de (100 x 100) mm²</td>
</tr>
<tr>
<td>Épaisseur</td>
<td>NBN EN ISO 2808</td>
<td></td>
</tr>
<tr>
<td>Adhérence</td>
<td>NF P98-282</td>
<td></td>
</tr>
<tr>
<td>Résistance en traction</td>
<td>NBN EN ISO 527-2</td>
<td></td>
</tr>
</tbody>
</table>

K. 9.2. DRAINAGE ET ÉVACUATION DES EAUX

<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l’essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance en compression</td>
<td>NBN EN 12190</td>
<td>Les éprouvettes sont conservées dans les conditions du chantier. Elles sont ensuite conservées un minimum de 7 jours dans les conditions spécifiées par la norme, avant essai</td>
</tr>
<tr>
<td>Drainabilité</td>
<td>CME 54.17</td>
<td></td>
</tr>
</tbody>
</table>

K. 9.3. IMPERMÉABILISATION DU BÉTON EXPOSÉ À UNE FORTE SATURATION EN EAU

<table>
<thead>
<tr>
<th>Caractéristiques mesurées ou nom de l’essai</th>
<th>Référence du mode opératoire</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance à la traction en surface</td>
<td>NBN EN 1542</td>
<td>Les pastilles sont collées à la surface du support béton. L’adhésif utilisé ne doit pas pénétrer dans le support</td>
</tr>
<tr>
<td>Teneur en matières solubles</td>
<td>CME 63.08</td>
<td>Si le contrôle de l’adhésion est fait en laboratoire, l’essai est réalisé sur éprouvette Ø 50 mm obtenue par carottage</td>
</tr>
<tr>
<td>Adhérence</td>
<td>NBN EN 1542</td>
<td></td>
</tr>
<tr>
<td>Epaisseur</td>
<td>NBN EN ISO 2808</td>
<td></td>
</tr>
</tbody>
</table>

K. 9.4. ETANCHEMENT DU BÉTON EXPOSÉ À UNE FORTE SATURATION EN EAU

Les essais sont ceux prévus par les normes et documents cités en K. 9.3.
K. 9.6. PROTECTION AU MOYEN DE REVÊTEMENT DES SURFACES EN BÉTON SOUMISES AUX INFLUENCES EXTÉRIEURES ET NON SOUMISES AU TRAFIC

Les essais sont ceux prévus par les normes et documents cités en K. 9.3.

K. 11. ESSAIS ET ÉPREUVES DES OUVRAGES D’ART

Les essais sont ceux prévus par les documents cités en K. 11.

K. 12. DIVERS

K. 12.1. REPÈRES TOPOGRAPHIQUES

La vérification porte sur le bon emplacement des repères et balises, leur bon scellement et sur leur présence aux plans as built.

K. 12.8. ETABLISSEMENT DES NOTES DE CALCUL

Les notes de calcul au même titre que les plans de projet sont soumis à l’examen du fonctionnaire dirigeant. La note de calcul doit toujours être accompagnée des plans et ce n’est que sur cet ensemble que le fonctionnaire dirigeant est amené à donner un avis favorable ou défavorable.

L. SIGNALISATION ROUTIÈRE

L. 2. TRAVAUX DE SIGNALISATION VERTICALE

<table>
<thead>
<tr>
<th>Moment stabilisant</th>
<th>NBN EN 1991-1-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromaticité</td>
<td></td>
</tr>
<tr>
<td>– type 1 / type 2 / type 3</td>
<td>PTV 662</td>
</tr>
<tr>
<td>Facteur de luminance</td>
<td></td>
</tr>
<tr>
<td>– type 1 / type 2 / type 3</td>
<td>PTV 662</td>
</tr>
</tbody>
</table>

L. 3. BALISAGE DES ROUTES

<table>
<thead>
<tr>
<th>Rétroréflecteurs biconvexes en verre (EN 12899-3 classe R3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Les essais sont ceux prévus par la norme NBN EN 12899-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>délinéateurs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>coordonnées chromatiques</td>
<td>NBN EN 12899-3 / CIE 15</td>
</tr>
<tr>
<td>facteur de luminance</td>
<td>NBN EN 12899-3 / CIE 15</td>
</tr>
<tr>
<td>résistance aux chocs</td>
<td>NBN EN 12899-3</td>
</tr>
<tr>
<td>sécurité passive</td>
<td>NBN EN 12767</td>
</tr>
<tr>
<td>exigences statiques</td>
<td>NBN EN 12899-3</td>
</tr>
<tr>
<td>résistance à la corrosion – parties non galvanisées</td>
<td>essai brouillard salin</td>
</tr>
<tr>
<td>résistance à la corrosion – parties galvanisées</td>
<td>NBN EN ISO 1461</td>
</tr>
</tbody>
</table>

Q. 64
CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI	RÉFÉRENCE DU MODE OPÉRATOIRE	COMMENTAIRES ET AJOUTS
coordonnées chromatiques | NBN EN 12899-3 / CIE 54.2 |
coefficient de rétroréflexion | NBN EN 12899-3 / CIE 54.2 |
résistance aux chocs | NBN EN 12899-3 | rétroréflecteurs type R2 avec une hauteur de chute de 200 mm (classe DH1)

L. 4. SIGNALISATION HORIZONTALE (MARQUAGES ROUTIERS)

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Déterminations météorologiques</td>
<td>NBN EN 1824</td>
<td></td>
</tr>
<tr>
<td>Contrôle de la couleur</td>
<td>NBN EN 1436</td>
<td></td>
</tr>
<tr>
<td>Coefficient de luminance sous éclairage diffus (Qd))</td>
<td>NBN EN 1436</td>
<td></td>
</tr>
<tr>
<td>Coefficient de luminance rétroréfléchie (RL)</td>
<td>NBN EN 1436</td>
<td></td>
</tr>
<tr>
<td>Rugosité</td>
<td>NBN EN 1436</td>
<td></td>
</tr>
<tr>
<td>Dosage des matériaux de marquage.</td>
<td>NBN EN 1824</td>
<td></td>
</tr>
<tr>
<td>Caractéristiques géométriques</td>
<td>CME 60.08</td>
<td></td>
</tr>
<tr>
<td>Aptitude à l’enlèvement</td>
<td>NBN EN 1824</td>
<td></td>
</tr>
</tbody>
</table>

L. 5. ECRAN ANTI-ÉBLOUISSEMENT

durabilité | NBN EN 12676-1 | |

M. TRAVAUX D'ENTRETIEN ET DE RÉPARATIONS

Se reporter aux paragraphes relatifs aux techniques ou matériaux utilisés.

<table>
<thead>
<tr>
<th>Caractéristiques de bitume</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainabilité (enrobé drainant décolmaté)</td>
<td>CME 54.34</td>
<td></td>
</tr>
<tr>
<td>Capacité de durcissement (enrobés stockables)</td>
<td>CME 54.32</td>
<td></td>
</tr>
<tr>
<td>Sensibilité au gel (enrobés stockables)</td>
<td>CME 54.33</td>
<td></td>
</tr>
<tr>
<td>Résistance au désenrobage (enrobés stockables)</td>
<td>CME 54.35</td>
<td></td>
</tr>
<tr>
<td>Stabilité (enrobés stockables)</td>
<td>CME 54.36</td>
<td></td>
</tr>
</tbody>
</table>

M. 2.1. RELÈVEMENT ET/OU STABILISATION DE REVÊTEMENT EN BÉTON PAR INJECTION

<table>
<thead>
<tr>
<th>Caractéristiques de béton</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosité</td>
<td>NBN EN 14117 (cône de Marsch)</td>
<td></td>
</tr>
<tr>
<td>Ressuage</td>
<td>NBN EN 480-4</td>
<td></td>
</tr>
<tr>
<td>Non-miscibilité</td>
<td>examen visuel</td>
<td>le coulis est déversé dans un récipient contenant de l’eau. La non-miscibilité est déterminée par examen visuel du comportement du coulis dans l’eau</td>
</tr>
<tr>
<td>Masse volumique</td>
<td>NBN EN 12350-6</td>
<td></td>
</tr>
</tbody>
</table>

M. 4.3. INTERFACES BITUMINEUSES AVEC GÉOTEXTILE NON TISSÉ
M. 4.5. INTERFACES AVEC GÉOTEXTILE NON TISSÉ RENFORCÉ PAR UNE GÉOGRILLE ET MATÉRIAUX SYNTHÉTIQUES OU PAR UN RÉSEAU ORTHOGONAL DE FIBRES SYNTHÉTIQUES

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rétention de bitume</td>
<td>NBN EN 15381</td>
<td></td>
</tr>
</tbody>
</table>

N. ENTRETIEN ET RÉPARATION DES OUVRAGES D’ART

N. 1. RÉPARATION DU BÉTON

N. 1.1. RÉPARATION DU BÉTON AU MOYEN DE MORTIER À BASE DE RÉSINE

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Profondeur de carbonatation</td>
<td>NBN EN 14630</td>
</tr>
<tr>
<td>Adhérence</td>
<td>NBN EN 1542</td>
</tr>
<tr>
<td>Les pastilles sont collées à la surface du support béton. L'adhésif utilisé ne doit pas pénétrer dans le support. Si le contrôle de l'adhérence est fait en laboratoire, l'essai est réalisé sur éprouvette Ø 50 mm obtenue par carottage. Les essais ont lieu au moins 7 jours après l'application.</td>
<td></td>
</tr>
</tbody>
</table>

| Résistance à la compression | NBN EN 12190 |
| Les éprouvettes sont conservées dans les conditions du chantier. Elles sont ensuite conservées un minimum de 7 jours dans les conditions spécifiées par la norme, avant essai. |

<table>
<thead>
<tr>
<th>Masse volumique</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>La masse volumique est calculée à partir des dimensions et de la pesée des éprouvettes après conservation, par référence à la NBN EN 12190</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caractéristiques non spécifiés</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Préparation des éprouvettes</td>
<td></td>
</tr>
<tr>
<td>Des éprouvettes prismatiques de 40 mm x 40 mm x 160 mm sont préparées à partir des mélanges réalisés sur chantier; le mortier est versé dans le moule et compacté à l'aide d'une dame manuelle ou d'une tige.</td>
<td></td>
</tr>
</tbody>
</table>

N. 1.2. RAGRÉAGE DU BÉTON AU MOYEN DE MORTIER À BASE DE LIANT HYDRAULIQUE

<table>
<thead>
<tr>
<th>Caractéristiques spécifiées</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Profondeur de carbonatation</td>
<td>NBN EN 14630</td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Adhérence</td>
<td>NBN EN 1542</td>
</tr>
<tr>
<td>Résistance en compression</td>
<td>NBN EN 12190</td>
</tr>
</tbody>
</table>

Caractéristiques non spécifiées

| Préparation des éprouvettes | Des éprouvettes prismatiques de 40 mm x 40 mm x 160 mm sont préparées à partir des mélanges réalisés sur chantier; le mortier est versé dans le moule et compacté à l’aide d’une dame manuelle ou d’une tige. |

N. 1.3. RÉPARATION DES DALLES DE TABLIER

Les essais sur les mortiers de réparation sont ceux prévus par les normes et documents cités en N. 1.1 et N. 1.2.

Caractéristiques spécifiées

Résistance en compression (micro-béton)	NBN EN 12390-3
Profondeur de macrotexture: Tache de sable	NBN EN 13036-1
Adhérence/Traction en surface (mortier de réparation, tiré gratte époxys)	NBN EN 1542
Adhérence (masse d’égalisation bitumineuse)	NF P98-282

En alternative, l’essai peut être réalisé à l’aide de pastilles carrées de (100 x 100) mm²

Adhérence (masse d’égalisation bitumineuse) | NF P98-282

L’essai est réalisé à l’aide de pastilles carrées de (100 x 100) mm²

Caractéristiques non spécifiées

| Prélèvement des échantillons | NBN EN 12350-1 |
| Fabrication et conservation des éprouvettes | NBN EN 12390-2 |

N. 1.4. RÉPARATION ET RENFORCEMENT AU MOYEN DE BÉTON PROJETÉ

Les essais sont ceux prévus par le cahier spécial des charges et dans la norme NBN EN 14487-1
N. 1.5. INJECTION DES FISSURES

Les essais sont ceux prévus par le cahier spécial des charges

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L'ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taux de remplissage de la fissure</td>
<td>Mesure de la longueur de la fissure et de l'injection sur carottes</td>
<td>La longueur de la fissure et de l'injection est mesurée sur la surface latérale de la carotte (2 coupes dans la même fissure). Dans le calcul des longueurs injectées, les bulles de moins de 10 mm de largeur sont considérées comme pleines. Dans le calcul des longueurs de fissures, les fissures dont l'ouverture est inférieure ou égale à 0,1 mm ne sont pas prises en compte</td>
</tr>
</tbody>
</table>

N. 1.6. EGALISATION DE SURFACE DU BÉTON AU MOYEN DE MORTIER À BASE DE LIANT HYDRAULIQUE

Les essais sont ceux prévus par les normes et documents cités en N. 1.2.

N. 1.7. PROTECTION AU MOYEN D'UN REVÊTEMENTS DES SURFACES EN BÉTON SOUMISES AUX INFLUENCES EXTÉRIEURES ET NON SOUMISES AU TRAFIC

Les essais sont ceux prévus par les normes et documents cités en K. 9.3.

N. 1.8. PROTECTION CATHODIQUE DES ARMATURES DU BÉTON

Les vérifications sont celles prévues au § 6. « Description des essais et mesures» du guide d'agrément G0016 de l'UBAtc.

N. 1.9. CALAGE, BOURRAGE ET SCELLEMENT AU MOYEN DE MORTIERS À BASE DE LIANT HYDRAULIQUE
CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résistance en compression</td>
<td>NBN EN 12190 (Dmax ≤ 4 mm)</td>
<td>Des éprouvettes prismatiques de 40x40x160 mm (Dmax ≤ 4 mm) ou cubiques de 100 mm (Dmax > 4 mm) sont préparées à partir des mélanges réalisés sur chantier; le mortier est versé dans le moule et, le cas échéant (pour les mortiers de bourrage), compacté à l'aide d'une dame manuelle ou d'une tige. Les éprouvettes sont conservées pendant 24 h en moule couvert et puis sous eau dans les conditions de chantier. Elles sont ensuite conservées un minimum de 7 jours dans les conditions finales spécifiées par les normes NBN EN 12190 ou NBN EN 12390-3. La durée et les conditions de conservation des éprouvettes sont précisées dans le rapport d’essais.</td>
</tr>
<tr>
<td></td>
<td>NBN EN 12390-3 (Dmax > 4 mm)</td>
<td></td>
</tr>
</tbody>
</table>

N. 1.10. PROTECTION DES ARMATURES CONTRE LA CORROSION AU MOYEN D’UN REVÊTEMENT

| Epaisseur | NBN EN ISO 2808 |

N. 1.11. SCELLEMENT DE BARRES D’ANCRAIRE

| Résistance à l’arrachement | NBN EN 1881 |

N. 1.12. IMPERMÉABILITÉ OU ÉTANCHEMENT DU BÉTON EN CONTACT PERMANENT OU SEMI PERMANENT AVEC L’EAU

Les essais sont ceux prévus par les normes et documents cités en K. 9.3.

N. 1.13. RÉPARATION DU BÉTON, EN CAS DE CORROSION (PAR DÉPASSIVATION DUE À LA CARBONATATION) D’ARMATURES AFFLEURANTES

Les essais sont ceux prévus par les normes et documents cités en N. 1.10, N. 1.2 et N. 1.7.

N. 1.14. HYDROFUGATION DU BÉTON AU MOYEN D’IMPRÉGNATION HYDROPHOBES

| Profondeur de pénétration | Par vaporisation d’eau (effet perlant) sur éprouvette prélevée par carottage |
| Absorption d’eau en surface | méthode de la pipe en verre (RILEM - 25 PEM) |

N. 2. RÉPARATION DE MACONNERIES
N. 2.1. RÉFECTION DE MAÇONNERIE DE BRIQUES, DE BLOCS ET DE PIERRES NATURELLES - N. 2.2. REMPLACEMENT EN RECHERCHE DE BRIQUES, DE BLOCS ET DE PIERRES NATURELLES

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briques en terres cuites</td>
<td>Les essais sont ceux prévus par les normes citées au C. 45.2</td>
<td></td>
</tr>
<tr>
<td>Blocs en Béton</td>
<td>Les essais sont ceux prévus par les normes citées au C. 45.3</td>
<td></td>
</tr>
<tr>
<td>Pierres naturelles</td>
<td>Les essais sont ceux prévus par les normes citées au C. 28</td>
<td></td>
</tr>
<tr>
<td>Mortier</td>
<td>Les essais sont ceux prévus par les normes citées au C. 13.1</td>
<td></td>
</tr>
</tbody>
</table>

N. 2.3. REJOINTOIENTEM

| Mortier | Les essais sont ceux prévus par les normes citées au C. 13.1 |

N. 2.4. ANCRAGE DES MURS DE TÊTE D’UN PONT VOÛTE EN MAÇONNERIE

Galvanisation	Les essais sont ceux prévus par les normes NBN EN ISO 1461 et NBN EN ISO 14173
Métauxlisation	Les essais sont ceux prévus par les normes NBN EN ISO 2063
Qualité de l’acier	Les essais sont ceux prévus par les normes citées au C.16

N. 2.5. RÉALISATION DE BARBACANES DE DRAINAGE

Les vérifications portent sur:
- l’implantation et la profondeur des forages
- la mise en place correcte des tubes de PVC.

N. 3. ENTRETIEN ET RÉPARATION DE STRUCTURES EN ACIER

N. 4. RÉPARATION DE L’ÉTANCHÉITÉ DE DALLES DE TABLIER AINSI QUE DE LEUR DRAINAGE ET DE L’ÉVACUATION D’EAU

Le K. 9.1.4 est d’application

N. 5. RÉPARATION D’APPUIIS

Les méthodes d’essais sont ceux prévues dans N. 5

N. 6. REMPLACEMENT DES TABLETTES SOUS GARDE-CORPS

Les méthodes d’essais sont ceux prévues dans N. 6

N. 7. REMPLACEMENT D’ELEMENTS DE GARDE-CORPS ET DE BARRIÈRES DE SÉCURITÉ POUR OUVRAGES D’ART

Méthodes d’essais à convenir

N. 8. REPÈRES DE NIVELLEMENT

Q. 70
<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le K. 12 est d’application</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. 9. ENTRETIEN, RÉPARATION ET REMPLACEMENT DES JOINTS DE DILATATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. 9.1. ENTRETIEN DES JOINTS DE DILATATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nettoyage des joints et dégagement des éléments étrangers</td>
<td>contrôle visuel</td>
<td></td>
</tr>
<tr>
<td>N. 9.3. REMPLACEMENT D’UN JOINT DE DILATATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Le contrôle se fait conformément aux prescriptions du K. 8.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. 10. RÉPARATION D’OUVRAGES EN TERRE ARMÉE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Les essais sont ceux prévus par les documents cités en N. 10 (N. 10.1 à N. 10.3).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. DISTRIBUTION D’EAU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. 1.1.2.2.3.1.5.1.5. SOUDURE À EFFECTUER SUR CHANTIER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soudure sur composants et pièces métalliques - Contrôle des soudures</td>
<td>CME 64.01</td>
<td></td>
</tr>
<tr>
<td>P. 1.1.8.2. CANALISATIONS SONT ÉPROUVÉES SOUS UNE PRESSION HYDRAULIQUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exécution de l’épreuve</td>
<td>CME 64.02</td>
<td></td>
</tr>
<tr>
<td>P. 1.1.8.3.1. CANALISATIONS DE TOUTES NATURES SAUF PE, SONT ÉPROUVÉES SOUS UNE PRESSION HYDRAULIQUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vérification de l’épreuve</td>
<td>CME 64.03</td>
<td></td>
</tr>
<tr>
<td>P. 1.2.1.4. NIVEAU SONORE POUR GROUPE NON IMMERSIBLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niveau de puissance sonore</td>
<td>NBN EN ISO 3744</td>
<td>mesurer à 1 m de distance</td>
</tr>
<tr>
<td>P. 1.2.8.15. RESISTANCE D’ISOLEMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résistance d'isolation</td>
<td>NBN EN 60851</td>
<td></td>
</tr>
<tr>
<td>P. 2.1.1.5. NIVEAU SONORE POUR GROUPE NON IMMERSIBLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>niveau de puissance sonore</td>
<td>NBN EN ISO 3744</td>
<td>vérification à 1 m de distance</td>
</tr>
<tr>
<td>P. 2.1.8.15. GROUPE MOTOPOMPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résistance d'isolation</td>
<td>CME 64.04</td>
<td></td>
</tr>
</tbody>
</table>

Q. 71
<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banc d’essai</td>
<td>CME 64.05</td>
<td></td>
</tr>
<tr>
<td>Mesure Q, H et η</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P. 2.4.7. CUVE SOUS PRESSION

<table>
<thead>
<tr>
<th>Matériau</th>
<th>Référence</th>
<th>Commentaires et ajouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soudure</td>
<td>CME 64.06</td>
<td></td>
</tr>
<tr>
<td>Radiographies des soudures</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P. 2.4.7. CUVE SOUS PRESSION

<table>
<thead>
<tr>
<th>Essai hydraulique</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 64.07</td>
<td></td>
</tr>
</tbody>
</table>

P. 2.5.1. TUYAUTERIES EN ACIER INOXYDABLE ET ACCESSOIRES

<table>
<thead>
<tr>
<th>Essai hydraulique</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 64.08</td>
<td></td>
</tr>
</tbody>
</table>

P. 2.7.6. CUVE D’AIR COMPRIMÉ ET ACCESSOIRES

<table>
<thead>
<tr>
<th>Essai de pression</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 64.10</td>
<td></td>
</tr>
</tbody>
</table>

P. 6.1.1.3. CABINE HAUTE TENSION

<table>
<thead>
<tr>
<th>Isolants liquides</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Détermination de la tension de claquage à fréquence industrielle</td>
<td>IEC 60156</td>
</tr>
<tr>
<td>Méthode d’essai</td>
<td></td>
</tr>
</tbody>
</table>

P. 6.1.2.1.4. CABINE HAUTE TENSION

<table>
<thead>
<tr>
<th>Traitement de surface</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Essais aux brouillards salins</td>
<td>CME 64.11</td>
</tr>
</tbody>
</table>

P. 6.1.2.8.1. CABINE HAUTE TENSION

<table>
<thead>
<tr>
<th>Accès aux compartiments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 64.12</td>
<td></td>
</tr>
</tbody>
</table>

P. 6.1.2.8.2.3. CABINE HAUTE TENSION

<table>
<thead>
<tr>
<th>Sécurité des exploitants</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 64.13</td>
<td></td>
</tr>
</tbody>
</table>

P. 6.1.2.9. CABINE HAUTE TENSION

<table>
<thead>
<tr>
<th>Essais</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 64.14</td>
<td></td>
</tr>
</tbody>
</table>

P. 6.2.3.2. TRANSFORMATEUR DE PUISSANCE
CARACTÉRISTIQUES MESURÉES OU
NOM DE L’ESSAI | RÉFÉRENCE DU MODE
OPÉRATOIRE | COMMENTAIRES ET AJOUTS
--- | --- | ---
Résistances aux courts-circuits | CME 64.15 |

P. 6.2.3.3. TRANSFORMATEUR DE PUISSANCE

Aptitude aux surcharges | CME 64.16 |

P. 6.2.3.4. TRANSFORMATEUR DE PUISSANCE

Décharges partielles | CME 64.17 |

P. 6.2.3.16. TRANSFORMATEUR DE PUISSANCE

Essais électriques | CME 64.18 |

P. 6.3.1.4. ARMOIRE ELECTRIQUE

Essais | CME 64.19 |

P. 6.4. CABLAGE ELECTRIQUE

Fils nus, conducteurs et câbles
Généralités
Méthodes d'essais pour la classification
Méthodes d'essai communes aux câbles soumis au feu | NBN C 30-004 | DIN EN 50267 |

P. 6.4.1.1. CABLES DE PUISSANCE MOYENNE TENSION: MONO-CONDUCTEUR EN CUIVRE

Méthodes d'essai | NBN HP 620 |
Méthodes d'essai | NBN C 30-004 F1 / F2 |

P. 6.4.1.2. CABLES DE PUISSANCE MOYENNE TENSION: MONO-CONDUCTEUR EN ALUMINIUM

Méthodes d'essai | NBN HP 620 |

P. 6.4.2.1. CABLES NON-ARMES POUR POSE INTERIEURE, EXTERIEURE ET SOUTERRAINE AV CONDUCTEURS EN CUIVRE

Méthodes d'essai | NBN HD 603 S1 |

P. 6.4.2.2. CABLES NON-ARMES POUR POSE EXTERIEURE ET SOUTERRAINE AVEC CONDUCTEURS EN ALUMINIUM

Méthodes d'essai | NBN HD 603 S1 |
Méthodes d'essai | NBN C 30-004 F1 |

P. 6.4.2.3. CABLES ARMES POUR POSE INTERIEURE, EXTERIEURE ET SOUTERRAINE AV CONDUCTEURS EN CUIVRE

Méthodes d'essai | NBN HD 603 S1 |
Méthodes d'essai | NBN C 30-004 F1 |

Q. 73
<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</th>
<th>RÉFÉRENCE DU MODE OPÉRATOIRE</th>
<th>COMMENTAIRES ET AJOUTS</th>
</tr>
</thead>
</table>

SOUTERRAINE AVEC CONDUCTEURS EN CUIVRE

<table>
<thead>
<tr>
<th>Méthodes d'essai</th>
<th>NBN HD 603 S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Méthodes d'essai</td>
<td>NBN C 30-004 F2</td>
</tr>
</tbody>
</table>

P. 6.4.2.4. CABLES D'INSTALLATION INTERIEURE (AVEC HALOGENE)

<table>
<thead>
<tr>
<th>Méthodes d'essai</th>
<th>DIN EN 50267</th>
</tr>
</thead>
<tbody>
<tr>
<td>Méthodes d'essai</td>
<td>NBN C 30-004 F2</td>
</tr>
</tbody>
</table>

P. 6.4.2.5. CABLES D'INSTALLATION INTERIEURE SANS HALOGENE

<table>
<thead>
<tr>
<th>Méthodes d'essai</th>
<th>DIN EN 50267</th>
</tr>
</thead>
<tbody>
<tr>
<td>Méthodes d'essai</td>
<td>NBN C 30-004 F2</td>
</tr>
</tbody>
</table>

P. 6.4.2.6. CABLES D'INSTALLATION INTERIEURE AVEC PROTECTION METALLIQUE (AVEC HALOGENE)

<table>
<thead>
<tr>
<th>Méthodes d'essai</th>
<th>DIN EN 50267</th>
</tr>
</thead>
<tbody>
<tr>
<td>Méthodes d'essai</td>
<td>NBN C 30-004 F2</td>
</tr>
</tbody>
</table>

P. 6.4.2.7. CABLES D'INSTALLATION INTERIEURE AVEC PROTECTION METALLIQUE SANS HALOGENE

<table>
<thead>
<tr>
<th>Méthodes d'essai</th>
<th>DIN EN 50267</th>
</tr>
</thead>
<tbody>
<tr>
<td>Méthodes d'essai</td>
<td>NBN C 30-004</td>
</tr>
</tbody>
</table>

P. 6.4.2.8. CABLES SPECIAUX POUR APPLICATION VARIATEUR DE FREQUENCE

<table>
<thead>
<tr>
<th>Méthodes d'essai</th>
<th>CEI 60502-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Méthodes d'essai</td>
<td>NBN C 30-004 F2</td>
</tr>
</tbody>
</table>

P. 6.4.3.1. CABLES DE SIGNALISATION MULTI-CONDUCTEURS NON-ARMES, TENSION DE SERVICE 150 V

| Méthodes d'essai | NBN C 30-004 F2 |

P. 6.4.3.2. CABLES DE SIGNALISATION MULTI-CONDUCTEURS ARMES, TENSION DE SERVICE 1000 V

<table>
<thead>
<tr>
<th>Méthodes d'essai</th>
<th>NBN HD 603/A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Méthodes d'essai</td>
<td>NBN C 30-004 F2</td>
</tr>
</tbody>
</table>

P. 6.4.3.3. CABLES DE TELECOMMUNICATION MULTI-PAIRES ARMES, TENSION DE SERVICE 500 V

<table>
<thead>
<tr>
<th>Méthodes d'essai</th>
<th>NBN HD 627</th>
</tr>
</thead>
<tbody>
<tr>
<td>Méthodes d'essai</td>
<td>NBN C 30-004 F1</td>
</tr>
<tr>
<td>CARACTÉRISTIQUES MESURÉES OU NOM DE L’ESSAI</td>
<td>RÉFÉRENCE DU MODE OPÉRATOIRE</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>P. 6.4.4. CABLES DE SECURITE RESISTANT AU FEU</td>
<td></td>
</tr>
<tr>
<td>Méthodes d'essai</td>
<td>NBN C 30-004</td>
</tr>
<tr>
<td>P. 6.4.4.2. CABLES DE PUISSANCE ET CONTROLE DE TENSION ASSIGNEE 0,6/1 KV</td>
<td></td>
</tr>
<tr>
<td>Méthodes d'essai</td>
<td>NBN C33-134</td>
</tr>
<tr>
<td>P. 6.4.5. CABLES FLEXIBLES (ET APTE A ETRE IMMERGE DANS L’EAU)</td>
<td></td>
</tr>
<tr>
<td>Méthodes d'essai</td>
<td>HD 22.4</td>
</tr>
<tr>
<td>P. 6.4.8.2. FIBRE OPTIQUE - CABLES NON-METALLIQUES A TUBE CENTRAL (JUSQU'A MAX. 24 FIBRES)</td>
<td></td>
</tr>
<tr>
<td>Méthodes d'essai</td>
<td>CEI 60794-1</td>
</tr>
<tr>
<td>P. 6.4.8.3. FIBRE OPTIQUE CABLES NON METALLIQUES MULTITUBES</td>
<td></td>
</tr>
<tr>
<td>Méthodes d'essai</td>
<td>CEI 60794-1</td>
</tr>
<tr>
<td>P. 6.4.8.4. FIBRE OPTIQUE - CABLES AVEC ARMURE METALLIQUE</td>
<td></td>
</tr>
<tr>
<td>Méthodes d'essai</td>
<td>CEI 60794-1</td>
</tr>
<tr>
<td>P. 6.4.8.6. FIBRE OPTIQUE</td>
<td></td>
</tr>
<tr>
<td>Essais</td>
<td>CME 64.20</td>
</tr>
<tr>
<td>P. 6.4.8.7.5.1.3. POSE ET TESTS DES GAINES POUR LE SOUFFLAGE DE CABLES A FIBRES OPTIQUES</td>
<td></td>
</tr>
<tr>
<td>Essais et mesures effectués sur les gaines pour soufflage de câbles à fibres optiques</td>
<td>CME 64.21</td>
</tr>
<tr>
<td>P. 7.3.2.3. MORTIER POUR CUVE DE STOCKAGE</td>
<td></td>
</tr>
<tr>
<td>Réception</td>
<td>CME 64.22</td>
</tr>
<tr>
<td>P. 7.4.2. DURABILITE DES OUVRAGES DE STOCKAGE- DURABILITE DU SUPPORT (PAROIS EN BETON ARME)</td>
<td></td>
</tr>
<tr>
<td>Préparation du Béton et transport</td>
<td>CME 64.23</td>
</tr>
<tr>
<td>Degré de plasticité du béton</td>
<td>CME 64.24</td>
</tr>
<tr>
<td>Enrobage des armatures</td>
<td>CME 64.25</td>
</tr>
</tbody>
</table>